在Python中,我如何在二进制文件中读取并循环该文件的每个字节?


当前回答

如果要读取大量二进制数据,可能需要考虑struct模块。它被记录为“在C和Python类型之间”转换,但当然,字节就是字节,它们是否被创建为C类型并不重要。例如,如果你的二进制数据包含两个2字节整数和一个4字节整数,你可以这样读取它们(例子来自struct文档):

>>> struct.unpack('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03')
(1, 2, 3)

您可能会发现这比显式遍历文件内容更方便、更快,或者两者兼而有之。

其他回答

如果你正在寻找一些快速的方法,这里有一个我一直在使用的方法,它已经工作了很多年:

from array import array

with open( path, 'rb' ) as file:
    data = array( 'B', file.read() ) # buffer the file

# evaluate it's data
for byte in data:
    v = byte # int value
    c = chr(byte)

如果你想迭代字符而不是整数,你可以简单地使用data = file.read(),它应该是py3中的bytes()对象。

要读取一个文件-一次一个字节(忽略缓冲)-你可以使用双参数iter(callable, sentinel)内置函数:

with open(filename, 'rb') as file:
    for byte in iter(lambda: file.read(1), b''):
        # Do stuff with byte

它调用file.read(1),直到没有返回b”(空字节串)。对于大文件,内存不会无限增长。你可以将buffering=0传递给open()来禁用缓冲——它保证每次迭代只读取一个字节(慢)。

With-statement自动关闭文件——包括下面的代码引发异常的情况。

尽管默认情况下存在内部缓冲,但一次处理一个字节的效率仍然很低。例如,下面是黑洞.py实用程序,它会吃掉所有给定的东西:

#!/usr/bin/env python3
"""Discard all input. `cat > /dev/null` analog."""
import sys
from functools import partial
from collections import deque

chunksize = int(sys.argv[1]) if len(sys.argv) > 1 else (1 << 15)
deque(iter(partial(sys.stdin.detach().read, chunksize), b''), maxlen=0)

例子:

$ dd if=/dev/zero bs=1M count=1000 | python3 blackhole.py

在我的机器上,当chunksize == 32768时,它处理大约1.5 GB/s,当chunksize == 1时,它只处理大约7.5 MB/s。也就是说,每次读取一个字节要慢200倍。考虑一下您是否可以重写处理以便一次使用多个字节,以及您是否需要性能。

Mmap允许您同时将文件视为bytearray和文件对象。如果需要访问两个接口,它可以作为在内存中加载整个文件的替代方案。特别是,你可以在一个内存映射文件上一次迭代一个字节,只使用简单的for循环:

from mmap import ACCESS_READ, mmap

with open(filename, 'rb', 0) as f, mmap(f.fileno(), 0, access=ACCESS_READ) as s:
    for byte in s: # length is equal to the current file size
        # Do stuff with byte

Mmap支持切片表示法。例如,mm[i:i+len]返回文件中从位置i开始的len字节。Python 3.2之前不支持上下文管理器协议;在这种情况下,需要显式调用mm.close()。使用mmap遍历每个字节比file.read(1)消耗更多的内存,但是mmap要快一个数量级。

在尝试了以上所有方法并使用@Aaron Hall的答案后,我在一台运行windows 10, 8gb RAM和Python 3.5 32位的计算机上得到了一个~ 90mb的文件的内存错误。我的一位同事推荐我使用numpy,它的效果非常好。

到目前为止,读取整个二进制文件(我测试过)的最快速度是:

import numpy as np

file = "binary_file.bin"
data = np.fromfile(file, 'u1')

参考

比目前任何方法都要快。希望它能帮助到一些人!

总结chrispy, Skurmedel, Ben Hoyt和Peter Hansen的所有出色之处,这将是一次一个字节处理二进制文件的最佳解决方案:

with open("myfile", "rb") as f:
    while True:
        byte = f.read(1)
        if not byte:
            break
        do_stuff_with(ord(byte))

对于python 2.6及以上版本,因为:

Python内部缓冲区-不需要读取块 DRY原则——不重复读行 语句确保干净的文件关闭 当没有更多字节时,'byte'的计算结果为false(当字节为零时不是)

或使用J. F.塞巴斯蒂安的解决方案提高速度

from functools import partial

with open(filename, 'rb') as file:
    for byte in iter(partial(file.read, 1), b''):
        # Do stuff with byte

或者如果你想把它作为一个生成器函数,就像codeape演示的那样:

def bytes_from_file(filename):
    with open(filename, "rb") as f:
        while True:
            byte = f.read(1)
            if not byte:
                break
            yield(ord(byte))

# example:
for b in bytes_from_file('filename'):
    do_stuff_with(b)

这篇文章本身并不是对这个问题的直接回答。相反,它是一个数据驱动的可扩展基准测试,可以用来比较这个问题的许多答案(以及利用后来更现代的Python版本中添加的新特性的变体),因此应该有助于确定哪个具有最佳性能。

在一些情况下,我修改了参考答案中的代码,使其与基准测试框架兼容。

首先,以下是目前Python 2和3的最新版本的结果:

Fastest to slowest execution speeds with 32-bit Python 2.7.16
  numpy version 1.16.5
  Test file size: 1,024 KiB
  100 executions, best of 3 repetitions

1                  Tcll (array.array) :   3.8943 secs, rel speed   1.00x,   0.00% slower (262.95 KiB/sec)
2  Vinay Sajip (read all into memory) :   4.1164 secs, rel speed   1.06x,   5.71% slower (248.76 KiB/sec)
3            codeape + iter + partial :   4.1616 secs, rel speed   1.07x,   6.87% slower (246.06 KiB/sec)
4                             codeape :   4.1889 secs, rel speed   1.08x,   7.57% slower (244.46 KiB/sec)
5               Vinay Sajip (chunked) :   4.1977 secs, rel speed   1.08x,   7.79% slower (243.94 KiB/sec)
6           Aaron Hall (Py 2 version) :   4.2417 secs, rel speed   1.09x,   8.92% slower (241.41 KiB/sec)
7                     gerrit (struct) :   4.2561 secs, rel speed   1.09x,   9.29% slower (240.59 KiB/sec)
8                     Rick M. (numpy) :   8.1398 secs, rel speed   2.09x, 109.02% slower (125.80 KiB/sec)
9                           Skurmedel :  31.3264 secs, rel speed   8.04x, 704.42% slower ( 32.69 KiB/sec)

Benchmark runtime (min:sec) - 03:26

Fastest to slowest execution speeds with 32-bit Python 3.8.0
  numpy version 1.17.4
  Test file size: 1,024 KiB
  100 executions, best of 3 repetitions

1  Vinay Sajip + "yield from" + "walrus operator" :   3.5235 secs, rel speed   1.00x,   0.00% slower (290.62 KiB/sec)
2                       Aaron Hall + "yield from" :   3.5284 secs, rel speed   1.00x,   0.14% slower (290.22 KiB/sec)
3         codeape + iter + partial + "yield from" :   3.5303 secs, rel speed   1.00x,   0.19% slower (290.06 KiB/sec)
4                      Vinay Sajip + "yield from" :   3.5312 secs, rel speed   1.00x,   0.22% slower (289.99 KiB/sec)
5      codeape + "yield from" + "walrus operator" :   3.5370 secs, rel speed   1.00x,   0.38% slower (289.51 KiB/sec)
6                          codeape + "yield from" :   3.5390 secs, rel speed   1.00x,   0.44% slower (289.35 KiB/sec)
7                                      jfs (mmap) :   4.0612 secs, rel speed   1.15x,  15.26% slower (252.14 KiB/sec)
8              Vinay Sajip (read all into memory) :   4.5948 secs, rel speed   1.30x,  30.40% slower (222.86 KiB/sec)
9                        codeape + iter + partial :   4.5994 secs, rel speed   1.31x,  30.54% slower (222.64 KiB/sec)
10                                        codeape :   4.5995 secs, rel speed   1.31x,  30.54% slower (222.63 KiB/sec)
11                          Vinay Sajip (chunked) :   4.6110 secs, rel speed   1.31x,  30.87% slower (222.08 KiB/sec)
12                      Aaron Hall (Py 2 version) :   4.6292 secs, rel speed   1.31x,  31.38% slower (221.20 KiB/sec)
13                             Tcll (array.array) :   4.8627 secs, rel speed   1.38x,  38.01% slower (210.58 KiB/sec)
14                                gerrit (struct) :   5.0816 secs, rel speed   1.44x,  44.22% slower (201.51 KiB/sec)
15                 Rick M. (numpy) + "yield from" :  11.8084 secs, rel speed   3.35x, 235.13% slower ( 86.72 KiB/sec)
16                                      Skurmedel :  11.8806 secs, rel speed   3.37x, 237.18% slower ( 86.19 KiB/sec)
17                                Rick M. (numpy) :  13.3860 secs, rel speed   3.80x, 279.91% slower ( 76.50 KiB/sec)

Benchmark runtime (min:sec) - 04:47

我还用一个更大的10mib测试文件运行它(运行了将近一个小时),得到的性能结果与上面所示的相当。

下面是用来做基准测试的代码:

from __future__ import print_function
import array
import atexit
from collections import deque, namedtuple
import io
from mmap import ACCESS_READ, mmap
import numpy as np
from operator import attrgetter
import os
import random
import struct
import sys
import tempfile
from textwrap import dedent
import time
import timeit
import traceback

try:
    xrange
except NameError:  # Python 3
    xrange = range


class KiB(int):
    """ KibiBytes - multiples of the byte units for quantities of information. """
    def __new__(self, value=0):
        return 1024*value


BIG_TEST_FILE = 1  # MiBs or 0 for a small file.
SML_TEST_FILE = KiB(64)
EXECUTIONS = 100  # Number of times each "algorithm" is executed per timing run.
TIMINGS = 3  # Number of timing runs.
CHUNK_SIZE = KiB(8)
if BIG_TEST_FILE:
    FILE_SIZE = KiB(1024) * BIG_TEST_FILE
else:
    FILE_SIZE = SML_TEST_FILE  # For quicker testing.

# Common setup for all algorithms -- prefixed to each algorithm's setup.
COMMON_SETUP = dedent("""
    # Make accessible in algorithms.
    from __main__ import array, deque, get_buffer_size, mmap, np, struct
    from __main__ import ACCESS_READ, CHUNK_SIZE, FILE_SIZE, TEMP_FILENAME
    from functools import partial
    try:
        xrange
    except NameError:  # Python 3
        xrange = range
""")


def get_buffer_size(path):
    """ Determine optimal buffer size for reading files. """
    st = os.stat(path)
    try:
        bufsize = st.st_blksize # Available on some Unix systems (like Linux)
    except AttributeError:
        bufsize = io.DEFAULT_BUFFER_SIZE
    return bufsize

# Utility primarily for use when embedding additional algorithms into benchmark.
VERIFY_NUM_READ = """
    # Verify generator reads correct number of bytes (assumes values are correct).
    bytes_read = sum(1 for _ in file_byte_iterator(TEMP_FILENAME))
    assert bytes_read == FILE_SIZE, \
           'Wrong number of bytes generated: got {:,} instead of {:,}'.format(
                bytes_read, FILE_SIZE)
"""

TIMING = namedtuple('TIMING', 'label, exec_time')

class Algorithm(namedtuple('CodeFragments', 'setup, test')):

    # Default timeit "stmt" code fragment.
    _TEST = """
        #for b in file_byte_iterator(TEMP_FILENAME):  # Loop over every byte.
        #    pass  # Do stuff with byte...
        deque(file_byte_iterator(TEMP_FILENAME), maxlen=0)  # Data sink.
    """

    # Must overload __new__ because (named)tuples are immutable.
    def __new__(cls, setup, test=None):
        """ Dedent (unindent) code fragment string arguments.
        Args:
          `setup` -- Code fragment that defines things used by `test` code.
                     In this case it should define a generator function named
                     `file_byte_iterator()` that will be passed that name of a test file
                     of binary data. This code is not timed.
          `test` -- Code fragment that uses things defined in `setup` code.
                    Defaults to _TEST. This is the code that's timed.
        """
        test =  cls._TEST if test is None else test  # Use default unless one is provided.

        # Uncomment to replace all performance tests with one that verifies the correct
        # number of bytes values are being generated by the file_byte_iterator function.
        #test = VERIFY_NUM_READ

        return tuple.__new__(cls, (dedent(setup), dedent(test)))


algorithms = {

    'Aaron Hall (Py 2 version)': Algorithm("""
        def file_byte_iterator(path):
            with open(path, "rb") as file:
                callable = partial(file.read, 1024)
                sentinel = bytes() # or b''
                for chunk in iter(callable, sentinel):
                    for byte in chunk:
                        yield byte
    """),

    "codeape": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                while True:
                    chunk = f.read(chunksize)
                    if chunk:
                        for b in chunk:
                            yield b
                    else:
                        break
    """),

    "codeape + iter + partial": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                for chunk in iter(partial(f.read, chunksize), b''):
                    for b in chunk:
                        yield b
    """),

    "gerrit (struct)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                fmt = '{}B'.format(FILE_SIZE)  # Reads entire file at once.
                for b in struct.unpack(fmt, f.read()):
                    yield b
    """),

    'Rick M. (numpy)': Algorithm("""
        def file_byte_iterator(filename):
            for byte in np.fromfile(filename, 'u1'):
                yield byte
    """),

    "Skurmedel": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                byte = f.read(1)
                while byte:
                    yield byte
                    byte = f.read(1)
    """),

    "Tcll (array.array)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                arr = array.array('B')
                arr.fromfile(f, FILE_SIZE)  # Reads entire file at once.
                for b in arr:
                    yield b
    """),

    "Vinay Sajip (read all into memory)": Algorithm("""
        def file_byte_iterator(filename):
            with open(filename, "rb") as f:
                bytes_read = f.read()  # Reads entire file at once.
            for b in bytes_read:
                yield b
    """),

    "Vinay Sajip (chunked)": Algorithm("""
        def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
            with open(filename, "rb") as f:
                chunk = f.read(chunksize)
                while chunk:
                    for b in chunk:
                        yield b
                    chunk = f.read(chunksize)
    """),

}  # End algorithms

#
# Versions of algorithms that will only work in certain releases (or better) of Python.
#
if sys.version_info >= (3, 3):
    algorithms.update({

        'codeape + iter + partial + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    for chunk in iter(partial(f.read, chunksize), b''):
                        yield from chunk
        """),

        'codeape + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while True:
                        chunk = f.read(chunksize)
                        if chunk:
                            yield from chunk
                        else:
                            break
        """),

        "jfs (mmap)": Algorithm("""
            def file_byte_iterator(filename):
                with open(filename, "rb") as f, \
                     mmap(f.fileno(), 0, access=ACCESS_READ) as s:
                    yield from s
        """),

        'Rick M. (numpy) + "yield from"': Algorithm("""
            def file_byte_iterator(filename):
            #    data = np.fromfile(filename, 'u1')
                yield from np.fromfile(filename, 'u1')
        """),

        'Vinay Sajip + "yield from"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    chunk = f.read(chunksize)
                    while chunk:
                        yield from chunk  # Added in Py 3.3
                        chunk = f.read(chunksize)
        """),

    })  # End Python 3.3 update.

if sys.version_info >= (3, 5):
    algorithms.update({

        'Aaron Hall + "yield from"': Algorithm("""
            from pathlib import Path

            def file_byte_iterator(path):
                ''' Given a path, return an iterator over the file
                    that lazily loads the file.
                '''
                path = Path(path)
                bufsize = get_buffer_size(path)

                with path.open('rb') as file:
                    reader = partial(file.read1, bufsize)
                    for chunk in iter(reader, bytes()):
                        yield from chunk
        """),

    })  # End Python 3.5 update.

if sys.version_info >= (3, 8, 0):
    algorithms.update({

        'Vinay Sajip + "yield from" + "walrus operator"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while chunk := f.read(chunksize):
                        yield from chunk  # Added in Py 3.3
        """),

        'codeape + "yield from" + "walrus operator"': Algorithm("""
            def file_byte_iterator(filename, chunksize=CHUNK_SIZE):
                with open(filename, "rb") as f:
                    while chunk := f.read(chunksize):
                        yield from chunk
        """),

    })  # End Python 3.8.0 update.update.


#### Main ####

def main():
    global TEMP_FILENAME

    def cleanup():
        """ Clean up after testing is completed. """
        try:
            os.remove(TEMP_FILENAME)  # Delete the temporary file.
        except Exception:
            pass

    atexit.register(cleanup)

    # Create a named temporary binary file of pseudo-random bytes for testing.
    fd, TEMP_FILENAME = tempfile.mkstemp('.bin')
    with os.fdopen(fd, 'wb') as file:
         os.write(fd, bytearray(random.randrange(256) for _ in range(FILE_SIZE)))

    # Execute and time each algorithm, gather results.
    start_time = time.time()  # To determine how long testing itself takes.

    timings = []
    for label in algorithms:
        try:
            timing = TIMING(label,
                            min(timeit.repeat(algorithms[label].test,
                                              setup=COMMON_SETUP + algorithms[label].setup,
                                              repeat=TIMINGS, number=EXECUTIONS)))
        except Exception as exc:
            print('{} occurred timing the algorithm: "{}"\n  {}'.format(
                    type(exc).__name__, label, exc))
            traceback.print_exc(file=sys.stdout)  # Redirect to stdout.
            sys.exit(1)
        timings.append(timing)

    # Report results.
    print('Fastest to slowest execution speeds with {}-bit Python {}.{}.{}'.format(
            64 if sys.maxsize > 2**32 else 32, *sys.version_info[:3]))
    print('  numpy version {}'.format(np.version.full_version))
    print('  Test file size: {:,} KiB'.format(FILE_SIZE // KiB(1)))
    print('  {:,d} executions, best of {:d} repetitions'.format(EXECUTIONS, TIMINGS))
    print()

    longest = max(len(timing.label) for timing in timings)  # Len of longest identifier.
    ranked = sorted(timings, key=attrgetter('exec_time')) # Sort so fastest is first.
    fastest = ranked[0].exec_time
    for rank, timing in enumerate(ranked, 1):
        print('{:<2d} {:>{width}} : {:8.4f} secs, rel speed {:6.2f}x, {:6.2f}% slower '
              '({:6.2f} KiB/sec)'.format(
                    rank,
                    timing.label, timing.exec_time, round(timing.exec_time/fastest, 2),
                    round((timing.exec_time/fastest - 1) * 100, 2),
                    (FILE_SIZE/timing.exec_time) / KiB(1),  # per sec.
                    width=longest))
    print()
    mins, secs = divmod(time.time()-start_time, 60)
    print('Benchmark runtime (min:sec) - {:02d}:{:02d}'.format(int(mins),
                                                               int(round(secs))))

main()