我正在努力处理matplotlib中的图边距。我使用下面的代码来生成我的图表:

plt.imshow(g)
c = plt.colorbar()
c.set_label("Number of Slabs")
plt.savefig("OutputToUse.png")

然而,我得到的输出数字在图的两边都有大量的空白。我已经搜索了谷歌并阅读了matplotlib文档,但我似乎找不到如何减少这一点。


当前回答

一种自动做到这一点的方法是将bbox_inch ='tight' kwarg转换为plt.savefig。

E.g.

import matplotlib.pyplot as plt
import numpy as np
data = np.arange(3000).reshape((100,30))
plt.imshow(data)
plt.savefig('test.png', bbox_inches='tight')

另一种方法是使用fig.tight_layout()

import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(0, 1, 20); ys = np.sin(xs)

fig = plt.figure()
axes = fig.add_subplot(1,1,1)
axes.plot(xs, ys)

# This should be called after all axes have been added
fig.tight_layout()
fig.savefig('test.png')

其他回答

如果有人想知道如何在应用plt.tight_layout()或fig.tight_layout()后消除其余的白色边距:使用参数pad(默认为1.08),你可以使它更紧凑: “图形边缘和子图边缘之间的填充,作为字体大小的一部分。” 例如,

plt.tight_layout(pad=0.05)

会把利润降低到很小的程度。放0对我没用,因为它使子图的方框也被切断了一点。

一种自动做到这一点的方法是将bbox_inch ='tight' kwarg转换为plt.savefig。

E.g.

import matplotlib.pyplot as plt
import numpy as np
data = np.arange(3000).reshape((100,30))
plt.imshow(data)
plt.savefig('test.png', bbox_inches='tight')

另一种方法是使用fig.tight_layout()

import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(0, 1, 20); ys = np.sin(xs)

fig = plt.figure()
axes = fig.add_subplot(1,1,1)
axes.plot(xs, ys)

# This should be called after all axes have been added
fig.tight_layout()
fig.savefig('test.png')

对我来说,上面的答案在matplotlib中不起作用。Win7上的__version__ = 1.4.3。因此,如果我们只对图像本身感兴趣(即,如果我们不需要注释、轴、刻度、标题、ylabel等),那么最好是简单地将numpy数组保存为image而不是savefig。

from pylab import *

ax = subplot(111)
ax.imshow(some_image_numpyarray)
imsave('test.tif', some_image_numpyarray)

# or, if the image came from tiff or png etc
RGBbuffer = ax.get_images()[0].get_array()
imsave('test.tif', RGBbuffer)

此外,使用opencv绘图函数(cv2. exe)。Line, cv2.polylines),我们可以直接在numpy数组上做一些绘图。http://docs.opencv.org/2.4/modules/core/doc/drawing_functions.html

你可以使用subplots_adjust()函数来调整matplotlib图的间距:

import matplotlib.pyplot as plt
plt.plot(whatever)
plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)

这既适用于屏幕上的图形,也适用于保存到文件中的图形,即使在一个图形上没有多个图形,也可以调用这个函数。

这些数字是图形尺寸的分数,并且需要调整以允许图形标签。

只需使用ax = fig.add_axes([左,下,宽,高]) 如果你想要精确控制图形布局。如。

left = 0.05
bottom = 0.05
width = 0.9
height = 0.9
ax = fig.add_axes([left, bottom, width, height])