我在Python中见过并使用过嵌套函数,它们与闭包的定义相匹配。那么为什么它们被称为“嵌套函数”而不是“闭包”呢?
嵌套函数不是闭包,因为它们不被外部使用吗?
更新:我正在阅读关于闭包的文章,它让我想到了关于Python的这个概念。我搜索了下面评论中有人提到的文章,但我不能完全理解文章中的解释,所以我才问这个问题。
我在Python中见过并使用过嵌套函数,它们与闭包的定义相匹配。那么为什么它们被称为“嵌套函数”而不是“闭包”呢?
嵌套函数不是闭包,因为它们不被外部使用吗?
更新:我正在阅读关于闭包的文章,它让我想到了关于Python的这个概念。我搜索了下面评论中有人提到的文章,但我不能完全理解文章中的解释,所以我才问这个问题。
当前回答
这个问题aaronasterling已经回答过了
然而,有些人可能对变量在底层是如何存储的感兴趣。
在开始之前:
闭包是从其封闭环境中继承变量的函数。当你将一个回调函数作为参数传递给另一个将要执行I/O操作的函数时,这个回调函数将在以后被调用,并且这个函数将——几乎神奇地——记住声明它的上下文,以及该上下文中所有可用的变量。
如果一个函数不使用自由变量,它就不能形成闭包。 如果存在另一个使用自由变量的内部关卡——所有之前的关卡都会保存词汇环境(例如最后的例子) python中的函数属性func_closure < 3。3. python >中的__closure__X保存自由变量。 python中的每个函数都有闭包属性,但如果没有自由变量,则该属性为空。
示例:闭包属性,但内部没有内容,因为没有自由变量。
>>> def foo():
... def fii():
... pass
... return fii
...
>>> f = foo()
>>> f.func_closure
>>> 'func_closure' in dir(f)
True
>>>
注意:自由变量必须创建一个闭包。
我将使用与上面相同的片段来解释:
>>> def make_printer(msg):
... def printer():
... print msg
... return printer
...
>>> printer = make_printer('Foo!')
>>> printer() #Output: Foo!
所有的Python函数都有一个闭包属性,所以让我们检查一下与闭包函数相关的封闭变量。
下面是函数打印机的func_closure属性
>>> 'func_closure' in dir(printer)
True
>>> printer.func_closure
(<cell at 0x108154c90: str object at 0x108151de0>,)
>>>
闭包属性返回一个单元格对象元组,其中包含在封闭范围内定义的变量的详细信息。
func_closure中的第一个元素,可以是None,也可以是包含函数自由变量绑定的单元格元组,并且是只读的。
>>> dir(printer.func_closure[0])
['__class__', '__cmp__', '__delattr__', '__doc__', '__format__', '__getattribute__',
'__hash__', '__init__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'cell_contents']
>>>
在上面的输出中,你可以看到cell_contents,让我们看看它存储了什么:
>>> printer.func_closure[0].cell_contents
'Foo!'
>>> type(printer.func_closure[0].cell_contents)
<type 'str'>
>>>
因此,当我们调用函数printer()时,它访问存储在cell_contents中的值。这就是我们如何得到输出为'Foo!'
我将再次使用上面的片段进行一些更改:
>>> def make_printer(msg):
... def printer():
... pass
... return printer
...
>>> printer = make_printer('Foo!')
>>> printer.func_closure
>>>
在上面的代码片段中,我没有在printer函数中打印msg,因此它不会创建任何自由变量。由于没有自由变量,闭包内将没有内容。这正是我们在上面看到的。
现在我将解释另一个不同的片段,以清除所有的自由变量与闭包:
>>> def outer(x):
... def intermediate(y):
... free = 'free'
... def inner(z):
... return '%s %s %s %s' % (x, y, free, z)
... return inner
... return intermediate
...
>>> outer('I')('am')('variable')
'I am free variable'
>>>
>>> inter = outer('I')
>>> inter.func_closure
(<cell at 0x10c989130: str object at 0x10c831b98>,)
>>> inter.func_closure[0].cell_contents
'I'
>>> inn = inter('am')
我们看到func_closure属性是一个闭包单元格的元组,我们可以显式引用它们和它们的内容,一个单元格有属性cell_contents
>>> inn.func_closure
(<cell at 0x10c9807c0: str object at 0x10c9b0990>,
<cell at 0x10c980f68: str object at 0x10c9eaf30>,
<cell at 0x10c989130: str object at 0x10c831b98>)
>>> for i in inn.func_closure:
... print i.cell_contents
...
free
am
I
>>>
这里当我们调用inn时,它会引用所有保存的自由变量,所以我们得到I是自由变量
>>> inn('variable')
'I am free variable'
>>>
其他回答
我想提供另一个简单的比较python和JS的例子,如果这有助于使事情更清楚。
JS:
function make () {
var cl = 1;
function gett () {
console.log(cl);
}
function sett (val) {
cl = val;
}
return [gett, sett]
}
和执行:
a = make(); g = a[0]; s = a[1];
s(2); g(); // 2
s(3); g(); // 3
Python:
def make ():
cl = 1
def gett ():
print(cl);
def sett (val):
cl = val
return gett, sett
和执行:
g, s = make()
g() #1
s(2); g() #1
s(3); g() #1
原因:正如上面许多人所说,在python中,如果内部作用域对同名变量赋值,则会在内部作用域中创建一个新的引用。JS则不是这样,除非你显式地用var关键字声明一个。
Python对闭包的支持很弱。要理解我的意思,请参考以下使用JavaScript闭包的计数器示例:
function initCounter(){
var x = 0;
function counter () {
x += 1;
console.log(x);
};
return counter;
}
count = initCounter();
count(); //Prints 1
count(); //Prints 2
count(); //Prints 3
闭包非常优雅,因为它赋予了这样编写的函数拥有“内部内存”的能力。从Python 2.7开始,这是不可能的。如果你尝试
def initCounter():
x = 0;
def counter ():
x += 1 ##Error, x not defined
print x
return counter
count = initCounter();
count(); ##Error
count();
count();
你会得到一个错误,说x没有定义。但如果其他人已经证明你可以打印它,那怎么可能呢?这是因为Python是如何管理函数变量作用域的。内部函数可以读取外部函数的变量,但不能写入它们。
这真是太遗憾了。但是只有只读闭包,你至少可以实现函数装饰器模式,Python为此提供了语法糖。
更新
正如前面所指出的,有很多方法可以处理python的作用域限制,我将介绍一些方法。
1. 使用global关键字(一般不推荐)。
2. 在Python 3中。X,使用nonlocal关键字(建议使用@unutbu和@leewz)
3.定义一个简单的可修改类Object
class Object(object):
pass
并在initCounter中创建一个Object范围来存储变量
def initCounter ():
scope = Object()
scope.x = 0
def counter():
scope.x += 1
print scope.x
return counter
由于作用域实际上只是一个引用,对其字段所采取的操作并不真正修改作用域本身,因此不会出现错误。
4. @unutbu指出的另一种方法是将每个变量定义为一个数组(x =[0]),并修改它的第一个元素(x[0] += 1)。同样没有出现错误,因为x本身没有被修改。
5. 正如@raxacoricofallapatorius所建议的,你可以让x成为counter的一个属性
def initCounter ():
def counter():
counter.x += 1
print counter.x
counter.x = 0
return counter
def nested1(num1):
print "nested1 has",num1
def nested2(num2):
print "nested2 has",num2,"and it can reach to",num1
return num1+num2 #num1 referenced for reading here
return nested2
给:
In [17]: my_func=nested1(8)
nested1 has 8
In [21]: my_func(5)
nested2 has 5 and it can reach to 8
Out[21]: 13
这是一个关于闭包是什么以及如何使用它的例子。
Python 2没有闭包——它有类似闭包的变通方法。
已经给出的答案中有很多例子——将变量复制到内部函数,在内部函数上修改对象,等等。
在Python 3中,支持更加显式和简洁:
def closure():
count = 0
def inner():
nonlocal count
count += 1
print(count)
return inner
用法:
start = closure()
another = closure() # another instance, with a different stack
start() # prints 1
start() # prints 2
another() # print 1
start() # prints 3
nonlocal关键字将内部函数绑定到显式提到的外部变量,实际上将其封闭起来。因此更明确的是一个“闭包”。
我遇到了这样一种情况,需要一个单独但持久的名称空间。 我使用课堂。否则我不会。 隔离但持久的名称是闭包。
>>> class f2:
... def __init__(self):
... self.a = 0
... def __call__(self, arg):
... self.a += arg
... return(self.a)
...
>>> f=f2()
>>> f(2)
2
>>> f(2)
4
>>> f(4)
8
>>> f(8)
16
# **OR**
>>> f=f2() # **re-initialize**
>>> f(f(f(f(2)))) # **nested**
16
# handy in list comprehensions to accumulate values
>>> [f(i) for f in [f2()] for i in [2,2,4,8]][-1]
16