我正在阅读Python烹饪书,目前正在研究生成器。我觉得很难理解。
由于我有Java背景,那么Java中是否有对等的语言?这本书讲的是“生产者/消费者”,但当我听到这个词时,我想到了线程。
什么是发电机,你为什么要用它?显然,没有引用任何书籍(除非你能直接从一本书中找到一个体面、简单的答案)。如果你慷慨的话,还可以举个例子!
我正在阅读Python烹饪书,目前正在研究生成器。我觉得很难理解。
由于我有Java背景,那么Java中是否有对等的语言?这本书讲的是“生产者/消费者”,但当我听到这个词时,我想到了线程。
什么是发电机,你为什么要用它?显然,没有引用任何书籍(除非你能直接从一本书中找到一个体面、简单的答案)。如果你慷慨的话,还可以举个例子!
当前回答
它有助于明确区分函数foo和生成器foo(n):
def foo(n):
yield n
yield n+1
Foo是一个函数。 Foo(6)是一个生成器对象。
使用生成器对象的典型方式是在循环中:
for n in foo(6):
print(n)
循环打印
# 6
# 7
可以将生成器视为可恢复函数。
Yield的行为类似于return,产生的值被生成器“返回”。然而,与return不同的是,下一次生成器被请求一个值时,生成器的函数foo将从它停止的地方恢复——在最后一个yield语句之后——并继续运行,直到遇到另一个yield语句。
在幕后,当您调用bar=foo(6)时,生成器对象bar为您定义了一个下一个属性。
你可以自己调用它来获取foo产生的值:
next(bar) # Works in Python 2.6 or Python 3.x
bar.next() # Works in Python 2.5+, but is deprecated. Use next() if possible.
当foo结束时(并且没有更多的输出值),调用next(bar)将抛出StopInteration错误。
其他回答
它有助于明确区分函数foo和生成器foo(n):
def foo(n):
yield n
yield n+1
Foo是一个函数。 Foo(6)是一个生成器对象。
使用生成器对象的典型方式是在循环中:
for n in foo(6):
print(n)
循环打印
# 6
# 7
可以将生成器视为可恢复函数。
Yield的行为类似于return,产生的值被生成器“返回”。然而,与return不同的是,下一次生成器被请求一个值时,生成器的函数foo将从它停止的地方恢复——在最后一个yield语句之后——并继续运行,直到遇到另一个yield语句。
在幕后,当您调用bar=foo(6)时,生成器对象bar为您定义了一个下一个属性。
你可以自己调用它来获取foo产生的值:
next(bar) # Works in Python 2.6 or Python 3.x
bar.next() # Works in Python 2.5+, but is deprecated. Use next() if possible.
当foo结束时(并且没有更多的输出值),调用next(bar)将抛出StopInteration错误。
Java中没有对等的。
这里有一个有点做作的例子:
#! /usr/bin/python
def mygen(n):
x = 0
while x < n:
x = x + 1
if x % 3 == 0:
yield x
for a in mygen(100):
print a
生成器中有一个从0到n运行的循环,如果循环变量是3的倍数,则生成该变量。
在for循环的每次迭代中,都会执行生成器。如果这是生成器第一次执行,它将从开始开始,否则它将从上一次生成的时间开始。
我给出了这段代码,解释了关于生成器的3个关键概念:
def numbers():
for i in range(10):
yield i
gen = numbers() #this line only returns a generator object, it does not run the code defined inside numbers
for i in gen: #we iterate over the generator and the values are printed
print(i)
#the generator is now empty
for i in gen: #so this for block does not print anything
print(i)
对于Stephan202的回答,我唯一能补充的是建议您看一看David Beazley的PyCon '08演示文稿“生成器技巧给系统程序员”,这是我所见过的关于如何以及为什么使用生成器的最好的解释。这就是让我从“Python看起来很有趣”变成“这就是我一直在寻找的东西”的原因。网址是http://www.dabeaz.com/generators/。
对于那些具有编程语言和计算背景的人,我喜欢从堆栈框架的角度来描述生成器。
在许多语言中,有一个堆栈在其上面是当前堆栈“帧”。堆栈框架包括分配给函数局部变量的空间,包括传递给该函数的参数。
当你调用一个函数时,当前的执行点(“程序计数器”或类似的东西)被压入堆栈,一个新的堆栈帧被创建。然后执行转移到被调用函数的开始。
对于常规函数,在某个时刻函数返回一个值,堆栈就会“弹出”。函数的堆栈帧将被丢弃,并在之前的位置继续执行。
当函数是生成器时,它可以使用yield语句在不丢弃堆栈帧的情况下返回值。函数中局部变量和程序计数器的值将被保留。这允许生成器在稍后恢复,从yield语句开始继续执行,并且它可以执行更多代码并返回另一个值。
在Python 2.5之前,所有生成器都这样做。Python 2.5还增加了将值传递回生成器的功能。这样,传入的值可以作为yield语句的表达式使用,yield语句从生成器临时返回了控件(和值)。
生成器的关键优势是函数的“状态”被保留,不像常规函数,每次堆栈帧被丢弃,你就会失去所有的“状态”。第二个优点是避免了一些函数调用开销(创建和删除堆栈帧),尽管这通常是一个次要的优点。