我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。

我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?


当前回答

下面是一个POSIX版本,它结合了前面的许多答案来提供以下特性:

子进程阻塞执行。 timeout函数在类成员函数上的使用。 严格要求终止时间。

下面是代码和一些测试用例:

import threading
import signal
import os
import time

class TerminateExecution(Exception):
    """
    Exception to indicate that execution has exceeded the preset running time.
    """


def quit_function(pid):
    # Killing all subprocesses
    os.setpgrp()
    os.killpg(0, signal.SIGTERM)

    # Killing the main thread
    os.kill(pid, signal.SIGTERM)


def handle_term(signum, frame):
    raise TerminateExecution()


def invoke_with_timeout(timeout, fn, *args, **kwargs):
    # Setting a sigterm handler and initiating a timer
    old_handler = signal.signal(signal.SIGTERM, handle_term)
    timer = threading.Timer(timeout, quit_function, args=[os.getpid()])
    terminate = False

    # Executing the function
    timer.start()
    try:
        result = fn(*args, **kwargs)
    except TerminateExecution:
        terminate = True
    finally:
        # Restoring original handler and cancel timer
        signal.signal(signal.SIGTERM, old_handler)
        timer.cancel()

    if terminate:
        raise BaseException("xxx")

    return result

### Test cases
def countdown(n):
    print('countdown started', flush=True)
    for i in range(n, -1, -1):
        print(i, end=', ', flush=True)
        time.sleep(1)
    print('countdown finished')
    return 1337


def really_long_function():
    time.sleep(10)


def really_long_function2():
    os.system("sleep 787")


# Checking that we can run a function as expected.
assert invoke_with_timeout(3, countdown, 1) == 1337

# Testing various scenarios
t1 = time.time()
try:
    print(invoke_with_timeout(1, countdown, 3))
    assert(False)
except BaseException:
    assert(time.time() - t1 < 1.1)
    print("All good", time.time() - t1)

t1 = time.time()
try:
    print(invoke_with_timeout(1, really_long_function2))
    assert(False)
except BaseException:
    assert(time.time() - t1 < 1.1)
    print("All good", time.time() - t1)


t1 = time.time()
try:
    print(invoke_with_timeout(1, really_long_function))
    assert(False)
except BaseException:
    assert(time.time() - t1 < 1.1)
    print("All good", time.time() - t1)

# Checking that classes are referenced and not
# copied (as would be the case with multiprocessing)


class X:
    def __init__(self):
        self.value = 0

    def set(self, v):
        self.value = v


x = X()
invoke_with_timeout(2, x.set, 9)
assert x.value == 9

其他回答

以防对任何人都有帮助,在@piro的回答的基础上,我做了一个函数装饰器:

import time
import signal
from functools import wraps


def timeout(timeout_secs: int):
    def wrapper(func):
        @wraps(func)
        def time_limited(*args, **kwargs):
            # Register an handler for the timeout
            def handler(signum, frame):
                raise Exception(f"Timeout for function '{func.__name__}'")

            # Register the signal function handler
            signal.signal(signal.SIGALRM, handler)

            # Define a timeout for your function
            signal.alarm(timeout_secs)

            result = None
            try:
                result = func(*args, **kwargs)
            except Exception as exc:
                raise exc
            finally:
                # disable the signal alarm
                signal.alarm(0)

            return result

        return time_limited

    return wrapper

在一个有20秒超时的函数上使用包装器看起来像这样:

    @timeout(20)
    def my_slow_or_never_ending_function(name):
        while True:
            time.sleep(1)
            print(f"Yet another second passed {name}...")

    try:
        results = my_slow_or_never_ending_function("Yooo!")
    except Exception as e:
        print(f"ERROR: {e}")

我是wrapt_timeout_decorator的作者。

这里介绍的大多数解决方案乍一看在Linux下都工作得很好——因为我们有fork()和signals()——但在windows上看起来有点不同。 当涉及到Linux上的子线程时,你不能再使用信号了。

为了在Windows下生成一个进程,它需要是可pickle的——许多装饰函数或Class方法都不是。

所以你需要使用一个更好的pickler像莳萝和multiprocess(不是pickle和multiprocessing) -这就是为什么你不能使用ProcessPoolExecutor(或只有有限的功能)。

For the timeout itself - You need to define what timeout means - because on Windows it will take considerable (and not determinable) time to spawn the process. This can be tricky on short timeouts. Lets assume, spawning the process takes about 0.5 seconds (easily !!!). If You give a timeout of 0.2 seconds what should happen? Should the function time out after 0.5 + 0.2 seconds (so let the method run for 0.2 seconds)? Or should the called process time out after 0.2 seconds (in that case, the decorated function will ALWAYS timeout, because in that time it is not even spawned)?

嵌套的装饰器也很讨厌,你不能在子线程中使用信号。如果你想要创建一个真正通用的、跨平台的装饰器,所有这些都需要考虑(并测试)。

其他问题是将异常传递回调用者,以及记录问题(如果在装饰函数中使用-不支持记录到另一个进程中的文件)

我试图涵盖所有的边缘情况,您可以查看包wrapt_timeout_decorator,或者至少测试您自己的解决方案,受到那里使用的单元测试的启发。

@Alexis Eggermont -不幸的是,我没有足够的分数来评论-也许其他人可以通知你-我认为我解决了你的进口问题。

我也遇到过同样的问题,但我的情况是需要在子线程上工作,信号不适合我,所以我写了一个python包:timeout-timer来解决这个问题,支持用作上下文或装饰器,使用信号或子线程模块来触发超时中断:

from timeout_timer import timeout, TimeoutInterrupt

class TimeoutInterruptNested(TimeoutInterrupt):
    pass

def test_timeout_nested_loop_both_timeout(timer="thread"):
    cnt = 0
    try:
        with timeout(5, timer=timer):
            try:
                with timeout(2, timer=timer, exception=TimeoutInterruptNested):
                    sleep(2)
            except TimeoutInterruptNested:
                cnt += 1
            time.sleep(10)
    except TimeoutInterrupt:
        cnt += 1
    assert cnt == 2

查看更多信息:https://github.com/dozysun/timeout-timer

你可以使用多处理。过程来做到这一点。

Code

import multiprocessing
import time

# bar
def bar():
    for i in range(100):
        print "Tick"
        time.sleep(1)

if __name__ == '__main__':
    # Start bar as a process
    p = multiprocessing.Process(target=bar)
    p.start()

    # Wait for 10 seconds or until process finishes
    p.join(10)

    # If thread is still active
    if p.is_alive():
        print "running... let's kill it..."

        # Terminate - may not work if process is stuck for good
        p.terminate()
        # OR Kill - will work for sure, no chance for process to finish nicely however
        # p.kill()

        p.join()

如果工作没有完成,我打算杀死进程,使用线程和进程来实现这一点。

from concurrent.futures import ThreadPoolExecutor

from time import sleep
import multiprocessing


# test case 1
def worker_1(a,b,c):
    for _ in range(2):
        print('very time consuming sleep')
        sleep(1)

    return a+b+c

# test case 2
def worker_2(in_name):
    for _ in range(10):
        print('very time consuming sleep')
        sleep(1)

    return 'hello '+in_name

作为上下文管理器的实际类

class FuncTimer():
    def __init__(self,fn,args,runtime):
        self.fn = fn
        self.args = args
        self.queue = multiprocessing.Queue()
        self.runtime = runtime
        self.process = multiprocessing.Process(target=self.thread_caller)

    def thread_caller(self):
        with ThreadPoolExecutor() as executor:
            future = executor.submit(self.fn, *self.args)
            self.queue.put(future.result())

    def  __enter__(self):
        return self

    def start_run(self):
        self.process.start()
        self.process.join(timeout=self.runtime)
        if self.process.exitcode is None:
            self.process.kill()
        if self.process.exitcode is None:
            out_res = None
            print('killed premature')
        else:
            out_res = self.queue.get()
        return out_res


    def __exit__(self, exc_type, exc_value, exc_traceback):
        self.process.kill()

如何使用

print('testing case 1') 
with FuncTimer(fn=worker_1,args=(1,2,3),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

print('testing case 2')
with FuncTimer(fn=worker_2,args=('ram',),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)