我有一个python脚本,它的工作就像它应该,但我需要写执行时间。我在谷歌上搜索过我应该使用timeit,但我似乎不能让它工作。
我的Python脚本是这样的:
import sys
import getopt
import timeit
import random
import os
import re
import ibm_db
import time
from string import maketrans
myfile = open("results_update.txt", "a")
for r in range(100):
rannumber = random.randint(0, 100)
update = "update TABLE set val = %i where MyCount >= '2010' and MyCount < '2012' and number = '250'" % rannumber
#print rannumber
conn = ibm_db.pconnect("dsn=myDB","usrname","secretPWD")
for r in range(5):
print "Run %s\n" % r
ibm_db.execute(query_stmt)
query_stmt = ibm_db.prepare(conn, update)
myfile.close()
ibm_db.close(conn)
我需要的是执行查询并将其写入文件results_update.txt所需的时间。目的是用不同的索引和调优机制测试数据库的更新语句。
您可以在要计时的块前后使用time.time()或time.clock()。
import time
t0 = time.time()
code_block
t1 = time.time()
total = t1-t0
这个方法不像timeit那样精确(它不平均几次运行),但它很简单。
time.time()(在Windows和Linux中)和time.clock()(在Linux中)对于快速函数来说不够精确(你得到total = 0)。在这种情况下,或者如果你想通过几次运行来平均时间,你必须手动多次调用函数(我认为你已经在你的示例代码中这样做了,当你设置它的number参数时,timeit会自动执行)
import time
def myfast():
code
n = 10000
t0 = time.time()
for i in range(n): myfast()
t1 = time.time()
total_n = t1-t0
在Windows中,正如Corey在评论中所述,time.clock()具有更高的精度(微秒而不是秒),并且比time.time()更受欢迎。
专注于一件具体的事情。磁盘I/O很慢,所以如果您要调整的只是数据库查询,我就把它从测试中去掉。
如果您需要计算数据库执行的时间,请寻找数据库工具,例如询问查询计划,并注意性能不仅随确切的查询和您拥有的索引而变化,还随数据负载(您存储了多少数据)而变化。
也就是说,你可以简单地把你的代码放在一个函数中,并使用time .timeit()运行该函数:
def function_to_repeat():
# ...
duration = timeit.timeit(function_to_repeat, number=1000)
这将禁用垃圾收集,重复调用function_to_repeat()函数,并使用timeit.default_timer()计算这些调用的总持续时间,这是特定平台可用的最准确的时钟。
你应该把设置代码移出重复函数;例如,您应该首先连接到数据库,然后仅计时查询。使用setup参数导入或创建这些依赖项,并将它们传递到你的函数中:
def function_to_repeat(var1, var2):
# ...
duration = timeit.timeit(
'function_to_repeat(var1, var2)',
'from __main__ import function_to_repeat, var1, var2',
number=1000)
将从脚本中抓取全局函数to_repeat, var1和var2,并将它们每次重复传递给函数。
我看到这个问题已经有了答案,但我仍然想补充我的2美分。
我也遇到过类似的情况,我必须测试几种方法的执行时间,因此写了一个小脚本,在其中编写的所有函数上调用timeit。
该脚本也可作为github gist在这里。
希望对你和其他人有所帮助。
from random import random
import types
def list_without_comprehension():
l = []
for i in xrange(1000):
l.append(int(random()*100 % 100))
return l
def list_with_comprehension():
# 1K random numbers between 0 to 100
l = [int(random()*100 % 100) for _ in xrange(1000)]
return l
# operations on list_without_comprehension
def sort_list_without_comprehension():
list_without_comprehension().sort()
def reverse_sort_list_without_comprehension():
list_without_comprehension().sort(reverse=True)
def sorted_list_without_comprehension():
sorted(list_without_comprehension())
# operations on list_with_comprehension
def sort_list_with_comprehension():
list_with_comprehension().sort()
def reverse_sort_list_with_comprehension():
list_with_comprehension().sort(reverse=True)
def sorted_list_with_comprehension():
sorted(list_with_comprehension())
def main():
objs = globals()
funcs = []
f = open("timeit_demo.sh", "w+")
for objname in objs:
if objname != 'main' and type(objs[objname]) == types.FunctionType:
funcs.append(objname)
funcs.sort()
for func in funcs:
f.write('''echo "Timing: %(funcname)s"
python -m timeit "import timeit_demo; timeit_demo.%(funcname)s();"\n\n
echo "------------------------------------------------------------"
''' % dict(
funcname = func,
)
)
f.close()
if __name__ == "__main__":
main()
from os import system
#Works only for *nix platforms
system("/bin/bash timeit_demo.sh")
#un-comment below for windows
#system("cmd timeit_demo.sh")
撇开时间不提,您所显示的代码完全不正确:执行100个连接(完全忽略除最后一个连接外的所有连接),然后在执行第一个执行调用时,向它传递一个局部变量query_stmt,该变量仅在执行调用之后才初始化。
首先,让你的代码正确,不要担心时间:即一个函数建立或接收一个连接,并在该连接上执行100或500或任意数量的更新,然后关闭连接。一旦您的代码正常工作,就应该考虑在它上使用timeit !
具体来说,如果你想计时的函数是一个叫做foobar的无参数函数,你可以使用timeit。Timeit(2.6或更高版本——2.5和之前版本更复杂):
timeit.timeit('foobar()', number=1000)
从3.5开始,globals形参使得timeit可以直接用于带形参的函数:
timeit.timeit('foobar(x,y)', number=1000, globals = globals())
您最好指定运行次数,因为对于您的用例来说,默认的100万可能太高了(导致在这段代码中花费大量时间;-)。
您可以在要计时的块前后使用time.time()或time.clock()。
import time
t0 = time.time()
code_block
t1 = time.time()
total = t1-t0
这个方法不像timeit那样精确(它不平均几次运行),但它很简单。
time.time()(在Windows和Linux中)和time.clock()(在Linux中)对于快速函数来说不够精确(你得到total = 0)。在这种情况下,或者如果你想通过几次运行来平均时间,你必须手动多次调用函数(我认为你已经在你的示例代码中这样做了,当你设置它的number参数时,timeit会自动执行)
import time
def myfast():
code
n = 10000
t0 = time.time()
for i in range(n): myfast()
t1 = time.time()
total_n = t1-t0
在Windows中,正如Corey在评论中所述,time.clock()具有更高的精度(微秒而不是秒),并且比time.time()更受欢迎。