我发现在Python 3.4中,有几个不同的多处理/线程库:multiprocessing vs threading vs asyncio。

但我不知道该用哪一个,或者是“推荐的”。它们做的事情是一样的,还是不同的?如果是的话,哪个是用来干什么的?我想在我的计算机上写一个使用多核的程序。但我不知道该学哪个图书馆。


当前回答

我不是一个专业的Python用户,但作为一个计算机体系结构的学生,我想我可以分享一些我在多处理和多线程之间选择的考虑因素。此外,其他一些答案(甚至在那些投票较高的答案中)都是滥用技术术语,所以我认为也有必要对这些问题进行一些澄清,我将首先进行澄清。

多处理和多线程之间的根本区别在于它们是否共享相同的内存空间。线程共享对相同虚拟内存空间的访问,因此线程交换计算结果(零复制,完全用户空间执行)是高效且容易的。

Processes on the other hand have separate virtual memory spaces. They cannot directly read or write the other process’ memory space, just like a person cannot read or alter the mind of another person without talking to him. (Allowing so would be a violation of memory protection and defeat the purpose of using virtual memory. ) To exchange data between processes, they have to rely on the operating system’s facility (e.g. message passing), and for more than one reasons this is more costly to do than the “shared memory” scheme used by threads. One reason is that invoking the OS’ message passing mechanism requires making a system call which will switch the code execution from user mode to kernel mode, which is time consuming; another reason is likely that OS message passing scheme will have to copy the data bytes from the senders’ memory space to the receivers’ memory space, so non-zero copy cost.

说一个多线程程序只能使用一个CPU是不正确的。很多人这么说的原因是由于CPython实现的一个工件:全局解释器锁(GIL)。由于GIL的存在,CPython进程中的线程是序列化的。因此,多线程python程序似乎只使用了一个CPU。

但是多线程计算机程序通常不局限于一个核心,对于Python来说,不使用GIL的实现确实可以并行运行多个线程,也就是说,同时在多个CPU上运行。(见https://wiki.python.org/moin/GlobalInterpreterLock)。

考虑到CPython是Python的主要实现,可以理解为什么多线程Python程序通常等同于绑定到单核。

With Python with GIL, the only way to unleash the power of multicores is to use multiprocessing (there are exceptions to this as mentioned below). But your problem better be easily partition-able into parallel sub-problems that have minimal intercommunication, otherwise a lot of inter-process communication will have to take place and as explained above, the overhead of using the OS’ message passing mechanism will be costly, sometimes so costly the benefits of parallel processing are totally offset. If the nature of your problem requires intense communication between concurrent routines, multithreading is the natural way to go. Unfortunately with CPython, true, effectively parallel multithreading is not possible due to the GIL. In this case you should realize Python is not the optimal tool for your project and consider using another language.

还有一种替代解决方案,即在用C(或其他语言)编写的外部库中实现并发处理例程,并将该模块导入Python。CPython GIL不会阻塞由该外部库生成的线程。

So, with the burdens of GIL, is multithreading in CPython any good? It still offers benefits though, as other answers have mentioned, if you’re doing IO or network communication. In these cases the relevant computation is not done by your CPU but done by other devices (in the case of IO, the disk controller and DMA (direct memory access) controller will transfer the data with minimal CPU participation; in the case of networking, the NIC (network interface card) and DMA will take care of much of the task without CPU’s participation), so once a thread delegates such task to the NIC or disk controller, the OS can put that thread to a sleeping state and switch to other threads of the same program to do useful work.

在我的理解中,asyncio模块本质上是用于IO操作的多线程的特定情况。

所以: cpu密集型程序,可以很容易地分区到多个进程上运行,但通信有限:如果GIL不存在,则使用多线程(如Jython),如果GIL存在,则使用多进程(如CPython)。

cpu密集型程序,需要在并发例程之间进行密集的通信:如果GIL不存在,则使用多线程,或者使用其他编程语言。

大量的IO: asyncio

其他回答

多处理可以并行运行。 多线程和asyncio不能并行运行。

使用英特尔(R)酷睿(TM) i7-8700K CPU @ 3.70GHz和32.0 GB RAM,我用2个进程、2个线程和2个异步任务计算了2到100000之间有多少素数,如下所示。*这是CPU限制计算:

Multiprocessing Multithreading asyncio
23.87 seconds 45.24 seconds 44.77 seconds

因为多处理可以并行运行,所以如上所示,多处理比多线程和asyncio快两倍。

我使用了以下3组代码:

多处理:

# "process_test.py"

from multiprocessing import Process
import time
start_time = time.time()

def test():
    num = 100000
    primes = 0
    for i in range(2, num + 1):
        for j in range(2, i):
            if i % j == 0:
                break
        else:
            primes += 1
    print(primes)

if __name__ == "__main__": # This is needed to run processes on Windows
    process_list = []

    for _ in range(0, 2): # 2 processes
        process = Process(target=test)
        process_list.append(process)

    for process in process_list:
        process.start()

    for process in process_list:
        process.join()

    print(round((time.time() - start_time), 2), "seconds") # 23.87 seconds

结果:

...
9592
9592
23.87 seconds

多线程:

# "thread_test.py"

from threading import Thread
import time
start_time = time.time()

def test():
    num = 100000
    primes = 0
    for i in range(2, num + 1):
        for j in range(2, i):
            if i % j == 0:
                break
        else:
            primes += 1
    print(primes)

thread_list = []

for _ in range(0, 2): # 2 threads
    thread = Thread(target=test)
    thread_list.append(thread)
    
for thread in thread_list:
    thread.start()

for thread in thread_list:
    thread.join()

print(round((time.time() - start_time), 2), "seconds") # 45.24 seconds

结果:

...
9592
9592
45.24 seconds

Asyncio:

# "asyncio_test.py"

import asyncio
import time
start_time = time.time()

async def test():
    num = 100000
    primes = 0
    for i in range(2, num + 1):
        for j in range(2, i):
            if i % j == 0:
                break
        else:
            primes += 1
    print(primes)

async def call_tests():
    tasks = []

    for _ in range(0, 2): # 2 asyncio tasks
        tasks.append(test())

    await asyncio.gather(*tasks)

asyncio.run(call_tests())

print(round((time.time() - start_time), 2), "seconds") # 44.77 seconds

结果:

...
9592
9592
44.77 seconds

They are intended for (slightly) different purposes and/or requirements. CPython (a typical, mainline Python implementation) still has the global interpreter lock so a multi-threaded application (a standard way to implement parallel processing nowadays) is suboptimal. That's why multiprocessing may be preferred over threading. But not every problem may be effectively split into [almost independent] pieces, so there may be a need in heavy interprocess communications. That's why multiprocessing may not be preferred over threading in general.

asyncio(该技术不仅在Python中可用,其他语言和/或框架也有它,例如Boost.ASIO)是一种有效处理来自多个同步源的大量I/O操作的方法,而不需要并行代码执行。因此,它只是针对特定任务的解决方案(确实是一个不错的解决方案!),而不是用于一般的并行处理。

已经有很多好的答案了。无法详细说明何时使用每种方法。这更像是两者的有趣结合。Multiprocessing + asyncio: https://pypi.org/project/aiomultiprocess/。

它的设计用例是高容量的,但仍然使用尽可能多的可用内核。Facebook使用这个库来编写某种基于python的文件服务器。Asyncio允许IO绑定流量,但multiprocessing允许多个事件循环和多个内核上的线程。

回购中的Ex代码:

import asyncio
from aiohttp import request
from aiomultiprocess import Pool

async def get(url):
    async with request("GET", url) as response:
        return await response.text("utf-8")

async def main():
    urls = ["https://jreese.sh", ...]
    async with Pool() as pool:
        async for result in pool.map(get, urls):
            ...  # process result
            
if __name__ == '__main__':
    # Python 3.7
    asyncio.run(main())
    
    # Python 3.6
    # loop = asyncio.get_event_loop()
    # loop.run_until_complete(main())

只是和加法在这里,不会工作在说jupyter笔记本很好,因为笔记本已经有一个asyncio循环运行。只是给你留个小纸条,别扯头发。

In multiprocessing you leverage multiple CPUs to distribute your calculations. Since each of the CPUs runs in parallel, you're effectively able to run multiple tasks simultaneously. You would want to use multiprocessing for CPU-bound tasks. An example would be trying to calculate a sum of all elements of a huge list. If your machine has 8 cores, you can "cut" the list into 8 smaller lists and calculate the sum of each of those lists separately on separate core and then just add up those numbers. You'll get a ~8x speedup by doing that.

In (multi)threading you don't need multiple CPUs. Imagine a program that sends lots of HTTP requests to the web. If you used a single-threaded program, it would stop the execution (block) at each request, wait for a response, and then continue once received a response. The problem here is that your CPU isn't really doing work while waiting for some external server to do the job; it could have actually done some useful work in the meantime! The fix is to use threads - you can create many of them, each responsible for requesting some content from the web. The nice thing about threads is that, even if they run on one CPU, the CPU from time to time "freezes" the execution of one thread and jumps to executing the other one (it's called context switching and it happens constantly at non-deterministic intervals). So if your task is I/O bound - use threading.

asyncio本质上是线程,而不是CPU,而是你,作为一个程序员(或者实际上是你的应用程序),决定何时何地发生上下文切换。在Python中,您使用await关键字来暂停协程的执行(使用async关键字定义)。

我不是一个专业的Python用户,但作为一个计算机体系结构的学生,我想我可以分享一些我在多处理和多线程之间选择的考虑因素。此外,其他一些答案(甚至在那些投票较高的答案中)都是滥用技术术语,所以我认为也有必要对这些问题进行一些澄清,我将首先进行澄清。

多处理和多线程之间的根本区别在于它们是否共享相同的内存空间。线程共享对相同虚拟内存空间的访问,因此线程交换计算结果(零复制,完全用户空间执行)是高效且容易的。

Processes on the other hand have separate virtual memory spaces. They cannot directly read or write the other process’ memory space, just like a person cannot read or alter the mind of another person without talking to him. (Allowing so would be a violation of memory protection and defeat the purpose of using virtual memory. ) To exchange data between processes, they have to rely on the operating system’s facility (e.g. message passing), and for more than one reasons this is more costly to do than the “shared memory” scheme used by threads. One reason is that invoking the OS’ message passing mechanism requires making a system call which will switch the code execution from user mode to kernel mode, which is time consuming; another reason is likely that OS message passing scheme will have to copy the data bytes from the senders’ memory space to the receivers’ memory space, so non-zero copy cost.

说一个多线程程序只能使用一个CPU是不正确的。很多人这么说的原因是由于CPython实现的一个工件:全局解释器锁(GIL)。由于GIL的存在,CPython进程中的线程是序列化的。因此,多线程python程序似乎只使用了一个CPU。

但是多线程计算机程序通常不局限于一个核心,对于Python来说,不使用GIL的实现确实可以并行运行多个线程,也就是说,同时在多个CPU上运行。(见https://wiki.python.org/moin/GlobalInterpreterLock)。

考虑到CPython是Python的主要实现,可以理解为什么多线程Python程序通常等同于绑定到单核。

With Python with GIL, the only way to unleash the power of multicores is to use multiprocessing (there are exceptions to this as mentioned below). But your problem better be easily partition-able into parallel sub-problems that have minimal intercommunication, otherwise a lot of inter-process communication will have to take place and as explained above, the overhead of using the OS’ message passing mechanism will be costly, sometimes so costly the benefits of parallel processing are totally offset. If the nature of your problem requires intense communication between concurrent routines, multithreading is the natural way to go. Unfortunately with CPython, true, effectively parallel multithreading is not possible due to the GIL. In this case you should realize Python is not the optimal tool for your project and consider using another language.

还有一种替代解决方案,即在用C(或其他语言)编写的外部库中实现并发处理例程,并将该模块导入Python。CPython GIL不会阻塞由该外部库生成的线程。

So, with the burdens of GIL, is multithreading in CPython any good? It still offers benefits though, as other answers have mentioned, if you’re doing IO or network communication. In these cases the relevant computation is not done by your CPU but done by other devices (in the case of IO, the disk controller and DMA (direct memory access) controller will transfer the data with minimal CPU participation; in the case of networking, the NIC (network interface card) and DMA will take care of much of the task without CPU’s participation), so once a thread delegates such task to the NIC or disk controller, the OS can put that thread to a sleeping state and switch to other threads of the same program to do useful work.

在我的理解中,asyncio模块本质上是用于IO操作的多线程的特定情况。

所以: cpu密集型程序,可以很容易地分区到多个进程上运行,但通信有限:如果GIL不存在,则使用多线程(如Jython),如果GIL存在,则使用多进程(如CPython)。

cpu密集型程序,需要在并发例程之间进行密集的通信:如果GIL不存在,则使用多线程,或者使用其他编程语言。

大量的IO: asyncio