我想按两列对数据帧进行分组,然后在这些组中对聚合的结果进行排序。

In [167]: df

Out[167]:
   count     job source
0      2   sales      A
1      4   sales      B
2      6   sales      C
3      3   sales      D
4      7   sales      E
5      5  market      A
6      3  market      B
7      2  market      C
8      4  market      D
9      1  market      E


In [168]: df.groupby(['job','source']).agg({'count':sum})

Out[168]:
               count
job    source       
market A           5
       B           3
       C           2
       D           4
       E           1
sales  A           2
       B           4
       C           6
       D           3
       E           7

我现在想在每个组中按降序对“count”列排序,然后只取前三行。得到类似这样的东西:

                count
job     source
market  A           5
        D           4
        B           3
sales   E           7
        C           6
        B           4

当前回答

试试这个,这是一个简单的方法来做groupby和降序排序:

df.groupby(['companyName'])['overallRating'].sum().sort_values(ascending=False).head(20)

其他回答

@joris的回答帮助很大。 这对我来说很管用。

df.groupby(['job'])['count'].nlargest(3)

试试这个,这是一个简单的方法来做groupby和降序排序:

df.groupby(['companyName'])['overallRating'].sum().sort_values(ascending=False).head(20)

我没有使用"by"就得到了这个错误:

类型错误:sort_values()缺少一个必需的位置参数:'by'

所以,我把它改成这样,现在它工作了:

df.groupby(['job','source']).agg({'count':sum}).sort_values(by='count',ascending=False).head(20)

当分组数据帧包含多个分组列(“multi-index”)时,使用其他方法会擦除其他列:

edf = pd.DataFrame({"job":["sales", "sales", "sales", "sales", "sales",
                           "market", "market", "market", "market", "market"],
                    "source":["A", "B", "C", "D", "E", "A", "B", "C", "D", "E"],
                    "count":[2, 4,6,3,7,5,3,2,4,1],
                    "other_col":[1,2,3,4,56,6,3,4,6,11]})

gdf = edf.groupby(["job", "source"]).agg({"count":sum, "other_col":np.mean})
gdf.groupby(level=0, group_keys=False).apply(lambda g:g.sort_values("count", ascending=False))

这将保持other_col以及在每个组中按计数列排序

如果你不需要对一个列求和,那么使用@tvashtar的答案。如果你确实需要求和,那么你可以使用@joris的答案或这个非常相似的答案。

df.groupby(['job']).apply(lambda x: (x.groupby('source')
                                      .sum()
                                      .sort_values('count', ascending=False))
                                     .head(3))