这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

以上行为之所以发生 是因为分局的预测

要了解分支预测,首先必须了解指示管道。

运行一个指令的步骤可以与运行上一个和下一个指令的步骤顺序重叠,这样可以同时同时执行不同的步骤。 这个技术被称为指令管线, 用来增加现代处理器的输送量。 要更好地了解这一点, 请在维基百科上看到这个例子 。

一般来说,现代处理器有相当长(和宽)的管道,因此许多指令都可以在飞行中。 见现代微处理器 A 90-Minute 指南!该指南首先引入基本的自序管线,然后从那里开始。

但为了方便起见,让我们考虑一个简单的单行输油管,只有这4个步骤。 (像典型的5级RISC一样,但省略了单独的 MEM 阶段。 )

IF -- -- 从内存 ID 获取指令 -- -- 解码指令 EX -- -- 执行指令 WB -- 写回到 CPU 注册簿

一般为2项指示提供4级输油管。

回到上述问题,让我们考虑以下指示:

                        A) if (data[c] >= 128)
                                /\
                               /  \
                              /    \
                        true /      \ false
                            /        \
                           /          \
                          /            \
                         /              \
              B) sum += data[c];          C) for loop or print().

如果没有部门预测,将出现下列情况:

要执行指示B或指示C,处理器必须等待(暂停)直到指示A离开管道中的EX阶段,因为进入指示B或指示C的决定取决于指示A的结果(即从何处获取)。

没有预测:如果情况属实:

不预言:如果情况不实:

由于等待指示A的结果,在上述情况下(没有分支预测;对真实和假的预测)所花的CPU周期总数为7个。

那么什么是分支预测?

分支预测器将尝试猜测分支( 如果- 如果- 如果- 如果- else 结构) 将往哪个方向走, 然后再确定这一点。 它不会等待指令 A 到达管道的 EX 阶段, 而是会猜测决定并转到该指令( 以我们为例 ) ( B 或 C ) 。

如果猜对了,输油管看起来是这样的:

如果后来发现猜测是错误的,那么部分执行的指示就会被丢弃,管道从正确的分支开始,造成延误。当分支错误时浪费的时间相当于从获取阶段到执行阶段的管道阶段的数量。现代微处理器往往有相当长的管道,因此错误预防的延迟时间在10到20小时的周期之间。管道越长,对良好的分支预测器的需求就越大。

在OP的代码中,当有条件的分支预测器第一次没有任何信息可以作为预测的基础,因此第一次它会随机选择下一个指令。 (或者返回静态预测,通常不前进,后退)。在循环中,它可以在历史的基础上进行预测。对于按升序排序的阵列,有三种可能性:

所有要件均大于128 有些开始的新要件小于128,稍晚则大于128

让我们假设预测器 将总是假设 真正的分支 在第一个运行。

因此,在第一种情况下,它总是要真正的分支,因为历史上它所有的预测都是正确的。 在第二种情况下,它最初预测错误,但经过几次反复,它会正确预测。 在第二种情况下,它最初将正确预测,直到元素低于128。 之后,它会失败一段时间,当它看到分支预测在历史上失败时,它会失败一段时间,它会正确。

在所有这些情况下,失败的数量将太少,因此,只需放弃部分执行的指示,从正确的分支重新开始,就只需要放弃部分执行的指示的几次,导致CPU周期减少。

但如果是随机的未排序数组,预测将需要丢弃部分执行的指示,然后大部分时间以正确的分支重新开始,结果与分类数组相比,CPU周期会增加。


进一步读作:

现代微处理器 A 90- Minute 指南! Dan Luuu 的关于分支预测的文章( 包括较老的分支预测器, 不是现代IT- TAGE 或 Perceptron) https:// en. wikipedia.org/ wiki/ Branch_ predictor 分支预测和解释器的性能 https:// en. wikipedia. org/ wiki/ Branch_ predictor 分支预测器 - 不要信任 Followlore - 2015 显示 Intel's Haswell 在预测 Python 翻译主循环的间接分支( 由不简单模式造成历史问题) , 与没有使用 IT- TAGE 的早期 CPUs 相比, 早期的CPUs presenterv( 类似循环) 没有帮助完全使用这个完全随机的 。 当源代码时, 最不可能的C- train lishing lishal listal lives liver 已经使用了, liver 。

其他回答

分部门预测。

使用分类数组, 条件数据 [c] 128 首先对于一系列值来说是虚假的, 然后对所有后期值都变成真实的。 这很容易预测。 使用未排序数组, 您支付分支成本 。

如果您对这个代码可以做的更多优化感到好奇, 请考虑 :

以原始循环开始 :

for (unsigned i = 0; i < 100000; ++i)
{
    for (unsigned j = 0; j < arraySize; ++j)
    {
        if (data[j] >= 128)
            sum += data[j];
    }
}

通过循环互换,我们可以安全地将这一循环改为:

for (unsigned j = 0; j < arraySize; ++j)
{
    for (unsigned i = 0; i < 100000; ++i)
    {
        if (data[j] >= 128)
            sum += data[j];
    }
}

然后,你可以看到,如果条件是不变的 在整个执行 i 循环, 所以你可以拉起,如果:

for (unsigned j = 0; j < arraySize; ++j)
{
    if (data[j] >= 128)
    {
        for (unsigned i = 0; i < 100000; ++i)
        {
            sum += data[j];
        }
    }
}

然后,你看,内环会崩溃成一个单一的表达式, 假设浮点模型允许它(/ fp: fast 被丢弃, 例如)

for (unsigned j = 0; j < arraySize; ++j)
{
    if (data[j] >= 128)
    {
        sum += data[j] * 100000;
    }
}

这比以前快了十万倍

毫无疑问,我们中有些人会感兴趣的是如何识别对CPU的分支定位器有问题的代码。 Valgrind 工具缓冲grinnd 拥有一个通过使用 -- branch- sim=yes 的旗子启用的分支源代码模拟器。 运行此问题的示例时, 外环数减少到10000, 并用 g++ 编译, 给出了这些结果 :

分类 :

==32551== Branches:        656,645,130  (  656,609,208 cond +    35,922 ind)
==32551== Mispredicts:         169,556  (      169,095 cond +       461 ind)
==32551== Mispred rate:            0.0% (          0.0%     +       1.2%   )

未分类 :

==32555== Branches:        655,996,082  (  655,960,160 cond +  35,922 ind)
==32555== Mispredicts:     164,073,152  (  164,072,692 cond +     460 ind)
==32555== Mispred rate:           25.0% (         25.0%     +     1.2%   )

钻入由 cg_ anoteate 产生的逐行输出,

分类 :

          Bc    Bcm Bi Bim
      10,001      4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .      .  .   .      {
           .      .  .   .          // primary loop
 327,690,000 10,016  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .      .  .   .          {
 327,680,000 10,006  0   0              if (data[c] >= 128)
           0      0  0   0                  sum += data[c];
           .      .  .   .          }
           .      .  .   .      }

未分类 :

          Bc         Bcm Bi Bim
      10,001           4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .           .  .   .      {
           .           .  .   .          // primary loop
 327,690,000      10,038  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .           .  .   .          {
 327,680,000 164,050,007  0   0              if (data[c] >= 128)
           0           0  0   0                  sum += data[c];
           .           .  .   .          }
           .           .  .   .      }

这样您就可以很容易地识别问题行 - 在未排序版本中, 如果( data[c] 128) 线导致164 050 007 错误预测的有条件分支( Bcm) , 在缓存grind 的分支- 指示模型下, 而分类版本中它只造成 10 006 。


或者,在Linux上,你可以使用性能计数器子系统完成同样的任务,但使用CPU计数器进行本地性能。

perf stat ./sumtest_sorted

分类 :

 Performance counter stats for './sumtest_sorted':

  11808.095776 task-clock                #    0.998 CPUs utilized          
         1,062 context-switches          #    0.090 K/sec                  
            14 CPU-migrations            #    0.001 K/sec                  
           337 page-faults               #    0.029 K/sec                  
26,487,882,764 cycles                    #    2.243 GHz                    
41,025,654,322 instructions              #    1.55  insns per cycle        
 6,558,871,379 branches                  #  555.455 M/sec                  
       567,204 branch-misses             #    0.01% of all branches        

  11.827228330 seconds time elapsed

未分类 :

 Performance counter stats for './sumtest_unsorted':

  28877.954344 task-clock                #    0.998 CPUs utilized          
         2,584 context-switches          #    0.089 K/sec                  
            18 CPU-migrations            #    0.001 K/sec                  
           335 page-faults               #    0.012 K/sec                  
65,076,127,595 cycles                    #    2.253 GHz                    
41,032,528,741 instructions              #    0.63  insns per cycle        
 6,560,579,013 branches                  #  227.183 M/sec                  
 1,646,394,749 branch-misses             #   25.10% of all branches        

  28.935500947 seconds time elapsed

它还可以进行源代码批注,进行拆卸。

perf record -e branch-misses ./sumtest_unsorted
perf annotate -d sumtest_unsorted
 Percent |      Source code & Disassembly of sumtest_unsorted
------------------------------------------------
...
         :                      sum += data[c];
    0.00 :        400a1a:       mov    -0x14(%rbp),%eax
   39.97 :        400a1d:       mov    %eax,%eax
    5.31 :        400a1f:       mov    -0x20040(%rbp,%rax,4),%eax
    4.60 :        400a26:       cltq   
    0.00 :        400a28:       add    %rax,-0x30(%rbp)
...

详情请见性能辅导课程。

以上行为之所以发生 是因为分局的预测

要了解分支预测,首先必须了解指示管道。

运行一个指令的步骤可以与运行上一个和下一个指令的步骤顺序重叠,这样可以同时同时执行不同的步骤。 这个技术被称为指令管线, 用来增加现代处理器的输送量。 要更好地了解这一点, 请在维基百科上看到这个例子 。

一般来说,现代处理器有相当长(和宽)的管道,因此许多指令都可以在飞行中。 见现代微处理器 A 90-Minute 指南!该指南首先引入基本的自序管线,然后从那里开始。

但为了方便起见,让我们考虑一个简单的单行输油管,只有这4个步骤。 (像典型的5级RISC一样,但省略了单独的 MEM 阶段。 )

IF -- -- 从内存 ID 获取指令 -- -- 解码指令 EX -- -- 执行指令 WB -- 写回到 CPU 注册簿

一般为2项指示提供4级输油管。

回到上述问题,让我们考虑以下指示:

                        A) if (data[c] >= 128)
                                /\
                               /  \
                              /    \
                        true /      \ false
                            /        \
                           /          \
                          /            \
                         /              \
              B) sum += data[c];          C) for loop or print().

如果没有部门预测,将出现下列情况:

要执行指示B或指示C,处理器必须等待(暂停)直到指示A离开管道中的EX阶段,因为进入指示B或指示C的决定取决于指示A的结果(即从何处获取)。

没有预测:如果情况属实:

不预言:如果情况不实:

由于等待指示A的结果,在上述情况下(没有分支预测;对真实和假的预测)所花的CPU周期总数为7个。

那么什么是分支预测?

分支预测器将尝试猜测分支( 如果- 如果- 如果- 如果- else 结构) 将往哪个方向走, 然后再确定这一点。 它不会等待指令 A 到达管道的 EX 阶段, 而是会猜测决定并转到该指令( 以我们为例 ) ( B 或 C ) 。

如果猜对了,输油管看起来是这样的:

如果后来发现猜测是错误的,那么部分执行的指示就会被丢弃,管道从正确的分支开始,造成延误。当分支错误时浪费的时间相当于从获取阶段到执行阶段的管道阶段的数量。现代微处理器往往有相当长的管道,因此错误预防的延迟时间在10到20小时的周期之间。管道越长,对良好的分支预测器的需求就越大。

在OP的代码中,当有条件的分支预测器第一次没有任何信息可以作为预测的基础,因此第一次它会随机选择下一个指令。 (或者返回静态预测,通常不前进,后退)。在循环中,它可以在历史的基础上进行预测。对于按升序排序的阵列,有三种可能性:

所有要件均大于128 有些开始的新要件小于128,稍晚则大于128

让我们假设预测器 将总是假设 真正的分支 在第一个运行。

因此,在第一种情况下,它总是要真正的分支,因为历史上它所有的预测都是正确的。 在第二种情况下,它最初预测错误,但经过几次反复,它会正确预测。 在第二种情况下,它最初将正确预测,直到元素低于128。 之后,它会失败一段时间,当它看到分支预测在历史上失败时,它会失败一段时间,它会正确。

在所有这些情况下,失败的数量将太少,因此,只需放弃部分执行的指示,从正确的分支重新开始,就只需要放弃部分执行的指示的几次,导致CPU周期减少。

但如果是随机的未排序数组,预测将需要丢弃部分执行的指示,然后大部分时间以正确的分支重新开始,结果与分类数组相比,CPU周期会增加。


进一步读作:

现代微处理器 A 90- Minute 指南! Dan Luuu 的关于分支预测的文章( 包括较老的分支预测器, 不是现代IT- TAGE 或 Perceptron) https:// en. wikipedia.org/ wiki/ Branch_ predictor 分支预测和解释器的性能 https:// en. wikipedia. org/ wiki/ Branch_ predictor 分支预测器 - 不要信任 Followlore - 2015 显示 Intel's Haswell 在预测 Python 翻译主循环的间接分支( 由不简单模式造成历史问题) , 与没有使用 IT- TAGE 的早期 CPUs 相比, 早期的CPUs presenterv( 类似循环) 没有帮助完全使用这个完全随机的 。 当源代码时, 最不可能的C- train lishing lishal listal lives liver 已经使用了, liver 。

避免分支预测错误的一种方法是建立一个搜索表,并用数据来编制索引。 Stefan de Bruijn在答复中讨论了这一点。

但在此情况下,我们知道值在范围[0,255],我们只关心值 128。这意味着我们可以很容易地提取一小块来说明我们是否想要一个值:通过将数据移到右边的7位数,我们只剩下0位或1位数,我们只有1位数时才想要增加值。让我们把这个位数称为“决定位数 ” 。

将决定位数的 0/1 值作为索引输入一个阵列, 我们就可以生成一个代码, 无论数据是排序还是未排序, 都同样快速。 我们的代码总是会添加一个值, 但是当决定位数为 0 时, 我们将会添加一个值, 我们并不关心的地方 。 以下是代码 :

// Test
clock_t start = clock();
long long a[] = {0, 0};
long long sum;

for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        int j = (data[c] >> 7);
        a[j] += data[c];
    }
}

double elapsedTime = static_cast<double>(clock() - start) / CLOCKS_PER_SEC;
sum = a[1];

此代码浪费了一半的添加值, 但从未出现分支预测失败 。 随机数据比有实际的如果声明的版本要快得多 。

但在我的测试中,一个清晰的查看表比这个稍快一些, 可能是因为对查看表的索引比位移略快一点。 这显示了我的代码是如何设置和使用搜索表的( 在代码中“ 查看表” 中, 不可想象地称之为润滑 ) 。 以下是 C++ 代码 :

// Declare and then fill in the lookup table
int lut[256];
for (unsigned c = 0; c < 256; ++c)
    lut[c] = (c >= 128) ? c : 0;

// Use the lookup table after it is built
for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        sum += lut[data[c]];
    }
}

在此情况下, 查看表只有256 字节, 所以它在一个缓存中非常适合, 并且非常快。 如果数据是 24 位值, 而我们只想要其中一半的话, 这个技术就不会有效... 搜索表会太大而不切实际。 另一方面, 我们可以将上面显示的两种技术结合起来: 首先将比特移开, 然后将一个查看表索引。 对于一个仅需要顶端半值的 24 位值, 我们可能会将数据右移12 位值, 并留下一个 12 位值的表格索引。 12 位表指数意味着一个有 4096 个值的表格, 这可能是实用的 。

将技术指数化为数组,而不是使用“如果”的语句,可以用来决定使用哪个指针。 我看到了一个图书馆,它安装了二进制树,而不是有两个名为指针(Pleft and pRight or whatever)的指针有长至2的指针阵列,并且使用“决定位”技术来决定要遵循哪个指针。例如,没有:

if (x < node->value)
    node = node->pLeft;
else
    node = node->pRight;

这个图书馆会做一些事情,比如:

i = (x < node->value);
node = node->link[i];

这是这个代码的链接: 红黑树,永远封存