我有麻烦重新安排以下数据帧:

set.seed(45)
dat1 <- data.frame(
    name = rep(c("firstName", "secondName"), each=4),
    numbers = rep(1:4, 2),
    value = rnorm(8)
    )

dat1
       name  numbers      value
1  firstName       1  0.3407997
2  firstName       2 -0.7033403
3  firstName       3 -0.3795377
4  firstName       4 -0.7460474
5 secondName       1 -0.8981073
6 secondName       2 -0.3347941
7 secondName       3 -0.5013782
8 secondName       4 -0.1745357

我想重塑它,以便每个唯一的“name”变量都是一个行名,“值”作为该行的观察值,“数字”作为冒号。就像这样:

     name          1          2          3         4
1  firstName  0.3407997 -0.7033403 -0.3795377 -0.7460474
5 secondName -0.8981073 -0.3347941 -0.5013782 -0.1745357

我试过熔化和铸造,还有其他一些方法,但似乎都不行。


当前回答

使用基R聚合函数:

aggregate(value ~ name, dat1, I)

# name           value.1  value.2  value.3  value.4
#1 firstName      0.4145  -0.4747   0.0659   -0.5024
#2 secondName    -0.8259   0.1669  -0.8962    0.1681

其他回答

只使用dplyr和map。

library(dplyr)
library(purrr)
set.seed(45)
dat1 <- data.frame(
  name = rep(c("firstName", "secondName"), each=4),
  numbers = rep(1:4, 2), value = rnorm(8)
)
longer_to_wider <- function(data, name_from, value_from){
  group <- colnames(data)[!(colnames(data) %in% c(name_from,value_from))]
  data %>% group_by(.data[[group]]) %>%
    summarise( name = list(.data[[name_from]]), 
               value = list(.data[[value_from]])) %>%
    {
      d <- data.frame(
        name = .[[name_from]] %>% unlist() %>% unique()
      )
      e <- map_dfc(.[[group]],function(x){
          y <- data_frame(
            x = data %>% filter(.data[[group]] == x) %>% pull(value_from)
          )
          colnames(y) <- x
          y
      })
      cbind(d,e)
    }
}
longer_to_wider(dat1, "name", "value")
#    name          1          2          3          4
# 1  firstName  0.3407997 -0.7033403 -0.3795377 -0.7460474
# 2 secondName -0.8981073 -0.3347941 -0.5013782 -0.1745357

使用基R聚合函数:

aggregate(value ~ name, dat1, I)

# name           value.1  value.2  value.3  value.4
#1 firstName      0.4145  -0.4747   0.0659   -0.5024
#2 secondName    -0.8259   0.1669  -0.8962    0.1681

您可以使用重塑()函数或使用重塑包中的melt() / cast()函数来实现这一点。对于第二个选项,示例代码为

library(reshape)
cast(dat1, name ~ numbers)

或者使用重塑2

library(reshape2)
dcast(dat1, name ~ numbers)

使用重塑功能:

reshape(dat1, idvar = "name", timevar = "numbers", direction = "wide")

使用你的例子数据框架,我们可以:

xtabs(value ~ name + numbers, data = dat1)