迭代器和生成器之间的区别是什么?举一些例子来说明你在什么时候使用每种情况会很有帮助。


当前回答

我用一种非常简单的方式专门为Python新手编写,尽管Python在本质上做了很多事情。

让我们从最基本的开始:

考虑一个列表,

l = [1,2,3]

让我们写一个等效函数:

def f():
    return [1,2,3]

打印(l)的O /p: [1,2,3] & O /p打印(f()): [1,2,3]

让列表l可迭代:在python中,列表总是可迭代的,这意味着你可以在任何你想要的时候应用迭代器。

让我们在list上应用迭代器:

iter_l = iter(l) # iterator applied explicitly

让我们把一个函数设为可迭代的,也就是说,写一个等效的生成器函数。 在python中,只要你引入关键字yield;它变成了一个生成器函数,迭代器将隐式应用。

注意:每个生成器在应用隐式迭代器时总是可迭代的,这里隐式迭代器是关键 因此生成器函数将是:

def f():
  yield 1 
  yield 2
  yield 3

iter_f = f() # which is iter(f) as iterator is already applied implicitly

如果你观察到,一旦你让函数f成为一个生成器,它就已经是iter(f)

Now,

L是列表,在应用迭代器方法iter后,它变成, iter(左) F已经是iter(F),在应用迭代器方法“iter”它 变成iter(iter(f))也就是iter(f)

这有点像你将int类型转换为int(x)它已经是int类型并且它将保持int(x)

例如o/p:

print(type(iter(iter(l))))

is

<class 'list_iterator'>

别忘了这是Python而不是C或c++

因此,由上述解释得出的结论是:

列出l ~= iter(l) 生成函数f == iter(f)

其他回答

对于相同的数据,你可以比较两种方法:

def myGeneratorList(n):
    for i in range(n):
        yield i

def myIterableList(n):
    ll = n*[None]
    for i in range(n):
        ll[i] = i
    return ll

# Same values
ll1 = myGeneratorList(10)
ll2 = myIterableList(10)
for i1, i2 in zip(ll1, ll2):
    print("{} {}".format(i1, i2))

# Generator can only be read once
ll1 = myGeneratorList(10)
ll2 = myIterableList(10)

print("{} {}".format(len(list(ll1)), len(ll2)))
print("{} {}".format(len(list(ll1)), len(ll2)))

# Generator can be read several times if converted into iterable
ll1 = list(myGeneratorList(10))
ll2 = myIterableList(10)

print("{} {}".format(len(list(ll1)), len(ll2)))
print("{} {}".format(len(list(ll1)), len(ll2)))

此外,如果检查内存占用,生成器占用的内存要少得多,因为它不需要同时将所有值存储在内存中。

iterator是一个更通用的概念:任何具有__next__方法(Python 2中的next)和__iter__方法且返回self的对象。

每个生成器都是迭代器,反之亦然。生成器是通过调用具有一个或多个yield表达式(yield语句,在Python 2.5及更早版本中)的函数来构建的,它是一个满足上一段对迭代器定义的对象。

当你需要一个具有复杂状态维护行为的类,或者想公开__next__(以及__iter__和__init__)之外的其他方法时,你可能想使用自定义迭代器,而不是生成器。大多数情况下,一个生成器(有时,对于足够简单的需求,一个生成器表达式)就足够了,而且编码更简单,因为状态维护(在合理的范围内)基本上是由框架挂起和恢复“为您完成”的。

例如,一个生成器,如:

def squares(start, stop):
    for i in range(start, stop):
        yield i * i

generator = squares(a, b)

或等效的生成器表达式(genexp)

generator = (i*i for i in range(a, b))

将需要更多的代码来构建自定义迭代器:

class Squares(object):
    def __init__(self, start, stop):
       self.start = start
       self.stop = stop
    def __iter__(self): return self
    def __next__(self): # next in Python 2
       if self.start >= self.stop:
           raise StopIteration
       current = self.start * self.start
       self.start += 1
       return current

iterator = Squares(a, b)

但是,当然,使用类Squares,你可以很容易地提供额外的方法。

def current(self):
    return self.start

如果您的应用程序中确实需要这些额外的功能。

这篇文章涵盖了两者之间的许多细节差异,但想在两者之间的概念差异上添加一些东西:

[…GoF书中定义的迭代器从集合中检索项,而生成器可以“凭空”生成项。这就是为什么斐波那契序列生成器是一个常见的例子:无限级数的数字不能存储在一个集合中。

Ramalho,卢西亚诺。流利的Python(第415页)。O ' reilly媒体。Kindle版。

当然,它并没有涵盖所有的方面,但我认为它给出了一个很好的概念,当一个人是有用的。

我用一种非常简单的方式专门为Python新手编写,尽管Python在本质上做了很多事情。

让我们从最基本的开始:

考虑一个列表,

l = [1,2,3]

让我们写一个等效函数:

def f():
    return [1,2,3]

打印(l)的O /p: [1,2,3] & O /p打印(f()): [1,2,3]

让列表l可迭代:在python中,列表总是可迭代的,这意味着你可以在任何你想要的时候应用迭代器。

让我们在list上应用迭代器:

iter_l = iter(l) # iterator applied explicitly

让我们把一个函数设为可迭代的,也就是说,写一个等效的生成器函数。 在python中,只要你引入关键字yield;它变成了一个生成器函数,迭代器将隐式应用。

注意:每个生成器在应用隐式迭代器时总是可迭代的,这里隐式迭代器是关键 因此生成器函数将是:

def f():
  yield 1 
  yield 2
  yield 3

iter_f = f() # which is iter(f) as iterator is already applied implicitly

如果你观察到,一旦你让函数f成为一个生成器,它就已经是iter(f)

Now,

L是列表,在应用迭代器方法iter后,它变成, iter(左) F已经是iter(F),在应用迭代器方法“iter”它 变成iter(iter(f))也就是iter(f)

这有点像你将int类型转换为int(x)它已经是int类型并且它将保持int(x)

例如o/p:

print(type(iter(iter(l))))

is

<class 'list_iterator'>

别忘了这是Python而不是C或c++

因此,由上述解释得出的结论是:

列出l ~= iter(l) 生成函数f == iter(f)

迭代器是使用next()方法获取序列的以下值的对象。

生成器是使用yield关键字生成或生成值序列的函数。

由生成器函数(下面的ex: foo())返回的生成器对象(下面的ex: f)上的每个next()方法调用,都会生成序列中的下一个值。

当调用生成器函数时,它返回一个生成器对象,甚至不需要开始执行该函数。当第一次调用next()方法时,函数开始执行,直到到达yield语句,该语句返回yield值。收益率会跟踪发生了什么,也就是说,它会记住最后一次执行。其次,next()调用从前一个值开始。

下面的示例演示生成器对象上yield和对next方法的调用之间的相互作用。

>>> def foo():
...     print("begin")
...     for i in range(3):
...         print("before yield", i)
...         yield i
...         print("after yield", i)
...     print("end")
...
>>> f = foo()
>>> next(f)
begin
before yield 0            # Control is in for loop
0
>>> next(f)
after yield 0             
before yield 1            # Continue for loop
1
>>> next(f)
after yield 1
before yield 2
2
>>> next(f)
after yield 2
end
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration