迭代器和生成器之间的区别是什么?举一些例子来说明你在什么时候使用每种情况会很有帮助。
当前回答
我用一种非常简单的方式专门为Python新手编写,尽管Python在本质上做了很多事情。
让我们从最基本的开始:
考虑一个列表,
l = [1,2,3]
让我们写一个等效函数:
def f():
return [1,2,3]
打印(l)的O /p: [1,2,3] & O /p打印(f()): [1,2,3]
让列表l可迭代:在python中,列表总是可迭代的,这意味着你可以在任何你想要的时候应用迭代器。
让我们在list上应用迭代器:
iter_l = iter(l) # iterator applied explicitly
让我们把一个函数设为可迭代的,也就是说,写一个等效的生成器函数。 在python中,只要你引入关键字yield;它变成了一个生成器函数,迭代器将隐式应用。
注意:每个生成器在应用隐式迭代器时总是可迭代的,这里隐式迭代器是关键 因此生成器函数将是:
def f():
yield 1
yield 2
yield 3
iter_f = f() # which is iter(f) as iterator is already applied implicitly
如果你观察到,一旦你让函数f成为一个生成器,它就已经是iter(f)
Now,
L是列表,在应用迭代器方法iter后,它变成, iter(左) F已经是iter(F),在应用迭代器方法“iter”它 变成iter(iter(f))也就是iter(f)
这有点像你将int类型转换为int(x)它已经是int类型并且它将保持int(x)
例如o/p:
print(type(iter(iter(l))))
is
<class 'list_iterator'>
别忘了这是Python而不是C或c++
因此,由上述解释得出的结论是:
列出l ~= iter(l) 生成函数f == iter(f)
其他回答
对于相同的数据,你可以比较两种方法:
def myGeneratorList(n):
for i in range(n):
yield i
def myIterableList(n):
ll = n*[None]
for i in range(n):
ll[i] = i
return ll
# Same values
ll1 = myGeneratorList(10)
ll2 = myIterableList(10)
for i1, i2 in zip(ll1, ll2):
print("{} {}".format(i1, i2))
# Generator can only be read once
ll1 = myGeneratorList(10)
ll2 = myIterableList(10)
print("{} {}".format(len(list(ll1)), len(ll2)))
print("{} {}".format(len(list(ll1)), len(ll2)))
# Generator can be read several times if converted into iterable
ll1 = list(myGeneratorList(10))
ll2 = myIterableList(10)
print("{} {}".format(len(list(ll1)), len(ll2)))
print("{} {}".format(len(list(ll1)), len(ll2)))
此外,如果检查内存占用,生成器占用的内存要少得多,因为它不需要同时将所有值存储在内存中。
iterator是一个更通用的概念:任何具有__next__方法(Python 2中的next)和__iter__方法且返回self的对象。
每个生成器都是迭代器,反之亦然。生成器是通过调用具有一个或多个yield表达式(yield语句,在Python 2.5及更早版本中)的函数来构建的,它是一个满足上一段对迭代器定义的对象。
当你需要一个具有复杂状态维护行为的类,或者想公开__next__(以及__iter__和__init__)之外的其他方法时,你可能想使用自定义迭代器,而不是生成器。大多数情况下,一个生成器(有时,对于足够简单的需求,一个生成器表达式)就足够了,而且编码更简单,因为状态维护(在合理的范围内)基本上是由框架挂起和恢复“为您完成”的。
例如,一个生成器,如:
def squares(start, stop):
for i in range(start, stop):
yield i * i
generator = squares(a, b)
或等效的生成器表达式(genexp)
generator = (i*i for i in range(a, b))
将需要更多的代码来构建自定义迭代器:
class Squares(object):
def __init__(self, start, stop):
self.start = start
self.stop = stop
def __iter__(self): return self
def __next__(self): # next in Python 2
if self.start >= self.stop:
raise StopIteration
current = self.start * self.start
self.start += 1
return current
iterator = Squares(a, b)
但是,当然,使用类Squares,你可以很容易地提供额外的方法。
def current(self):
return self.start
如果您的应用程序中确实需要这些额外的功能。
这篇文章涵盖了两者之间的许多细节差异,但想在两者之间的概念差异上添加一些东西:
[…GoF书中定义的迭代器从集合中检索项,而生成器可以“凭空”生成项。这就是为什么斐波那契序列生成器是一个常见的例子:无限级数的数字不能存储在一个集合中。
Ramalho,卢西亚诺。流利的Python(第415页)。O ' reilly媒体。Kindle版。
当然,它并没有涵盖所有的方面,但我认为它给出了一个很好的概念,当一个人是有用的。
我用一种非常简单的方式专门为Python新手编写,尽管Python在本质上做了很多事情。
让我们从最基本的开始:
考虑一个列表,
l = [1,2,3]
让我们写一个等效函数:
def f():
return [1,2,3]
打印(l)的O /p: [1,2,3] & O /p打印(f()): [1,2,3]
让列表l可迭代:在python中,列表总是可迭代的,这意味着你可以在任何你想要的时候应用迭代器。
让我们在list上应用迭代器:
iter_l = iter(l) # iterator applied explicitly
让我们把一个函数设为可迭代的,也就是说,写一个等效的生成器函数。 在python中,只要你引入关键字yield;它变成了一个生成器函数,迭代器将隐式应用。
注意:每个生成器在应用隐式迭代器时总是可迭代的,这里隐式迭代器是关键 因此生成器函数将是:
def f():
yield 1
yield 2
yield 3
iter_f = f() # which is iter(f) as iterator is already applied implicitly
如果你观察到,一旦你让函数f成为一个生成器,它就已经是iter(f)
Now,
L是列表,在应用迭代器方法iter后,它变成, iter(左) F已经是iter(F),在应用迭代器方法“iter”它 变成iter(iter(f))也就是iter(f)
这有点像你将int类型转换为int(x)它已经是int类型并且它将保持int(x)
例如o/p:
print(type(iter(iter(l))))
is
<class 'list_iterator'>
别忘了这是Python而不是C或c++
因此,由上述解释得出的结论是:
列出l ~= iter(l) 生成函数f == iter(f)
迭代器是使用next()方法获取序列的以下值的对象。
生成器是使用yield关键字生成或生成值序列的函数。
由生成器函数(下面的ex: foo())返回的生成器对象(下面的ex: f)上的每个next()方法调用,都会生成序列中的下一个值。
当调用生成器函数时,它返回一个生成器对象,甚至不需要开始执行该函数。当第一次调用next()方法时,函数开始执行,直到到达yield语句,该语句返回yield值。收益率会跟踪发生了什么,也就是说,它会记住最后一次执行。其次,next()调用从前一个值开始。
下面的示例演示生成器对象上yield和对next方法的调用之间的相互作用。
>>> def foo():
... print("begin")
... for i in range(3):
... print("before yield", i)
... yield i
... print("after yield", i)
... print("end")
...
>>> f = foo()
>>> next(f)
begin
before yield 0 # Control is in for loop
0
>>> next(f)
after yield 0
before yield 1 # Continue for loop
1
>>> next(f)
after yield 1
before yield 2
2
>>> next(f)
after yield 2
end
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录