对于我开发的一些应用程序(后来渐渐忘记了),我一直在编写纯SQL,主要用于MySQL。虽然我在python中使用过orm,比如SQLAlchemy,但我并没有坚持使用它们太久。通常是文档或复杂性(从我的角度来看)阻碍了我。
我是这样认为的:为了可移植性,使用ORM,如果只使用一种类型的数据库,则使用纯SQL。在开发需要数据库支持的应用程序时,我真的在寻找关于何时使用ORM或SQL的建议。
考虑到这一点,使用轻量级包装器来处理数据库不一致要比使用ORM好得多。
对于我开发的一些应用程序(后来渐渐忘记了),我一直在编写纯SQL,主要用于MySQL。虽然我在python中使用过orm,比如SQLAlchemy,但我并没有坚持使用它们太久。通常是文档或复杂性(从我的角度来看)阻碍了我。
我是这样认为的:为了可移植性,使用ORM,如果只使用一种类型的数据库,则使用纯SQL。在开发需要数据库支持的应用程序时,我真的在寻找关于何时使用ORM或SQL的建议。
考虑到这一点,使用轻量级包装器来处理数据库不一致要比使用ORM好得多。
当前回答
没有“一刀切”的解决方案,对于“我是否应该使用an或/m”这个问题也是如此。”。
我会说:如果你必须写一个非常“数据”的应用程序/工具,没有太多的其他逻辑,那么我会使用纯SQL,因为SQL是这类应用程序的领域特定语言。
另一方面,如果我要编写一个包含大量“领域”逻辑的业务/企业应用程序,那么我将编写一个富类模型,它可以在代码中表达这个领域。在这种情况下,OR/M映射器可能会非常有用,因为它可以从您手中省去大量管道代码。
其他回答
任何值得尊敬的设计都需要对数据库进行一些抽象,以处理阻抗不匹配。但是我认为最简单的第一步(对于大多数情况来说已经足够了)应该是DAL,而不是重量级的ORM。你唯一的选择并不是那些极端的选择。
编辑回复一个要求我描述如何区分DAL和ORM的评论:
DAL是您自己编写的,可能从简单地封装一个表并将其字段映射到属性的类开始。ORM是不需要为从dbms模式的其他属性推断出的抽象机制而编写的代码,主要是pk和fk。(这是您发现自动抽象是否开始出现漏洞的地方。我更喜欢有意地告知他们,但这可能只是我的个人偏好)。
我开发的一个应用是用python写的IRC机器人。它使用的模块在单独的线程中运行,但我还没有找到一种方法来处理使用sqlite时的线程。不过,这可能是一个单独的问题。
我真的应该把题目和问题都改写一下。我从来没有在任何语言中使用过DAL。
使用像SQL一样工作的ORM,但提供编译时检查和类型安全。比如我最喜欢的:数据知识对象(披露:是我写的)
例如:
for (Bug bug : Bug.ALL.limit(100)) {
int id = bug.getId();
String title = bug.getTitle();
System.out.println(id +" "+ title);
}
完全流。易于设置(不需要定义映射-读取现有模式)。支持连接、事务、内部查询、聚合等。几乎可以用SQL做任何事情。从庞大的数据集(金融时间序列)一直到琐碎的数据集(Android),这一点都得到了证明。
在现代软件开发场景中,是否使用框架是非常常见的难题。
重要的是要理解每个框架或方法都有其优点和缺点——例如,根据我们的经验,我们发现ORM在处理事务时很有用,即插入/更新/删除操作——但当涉及到获取具有复杂结果的数据时,评估ORM工具的性能和有效性就变得重要了。
同样重要的是要理解,选择一个框架或方法并在其中实现所有内容并不是强制性的。我们的意思是,我们可以混合使用ORM和本地查询语言。许多ORM框架在本地SQL中为插件提供扩展点。我们应该尽量不要过度使用一个框架或方法。我们可以结合某些框架或方法,得出适当的解决方案。
当涉及到高并发性的插入、更新、删除和版本控制时,可以使用ORM,还可以使用Native SQL生成报告和长清单
ORM不仅仅是可移植性(就这一点而言,即使使用ORM也很难实现可移植性)。当ORM工具将您从编写模板SQL查询(通过PK或谓词、插入、更新和删除进行选择)中解放出来,并让您专注于问题域时,它基本上为您提供了持久存储之上的抽象层。