考虑下面的代码:
avgDists = np.array([1, 8, 6, 9, 4])
ids = avgDists.argsort()[:n]
这给出了n个最小元素的下标。是否可以使用相同的argsort按降序得到n个最高元素的下标?
考虑下面的代码:
avgDists = np.array([1, 8, 6, 9, 4])
ids = avgDists.argsort()[:n]
这给出了n个最小元素的下标。是否可以使用相同的argsort按降序得到n个最高元素的下标?
当前回答
而不是用np。Argsort你可以用np。Argpartition -如果你只需要最低/最高n个元素的索引。
这并不需要对整个数组进行排序,只需要对你需要的部分进行排序,但请注意“分区内的顺序”是未定义的,所以虽然它给出了正确的索引,但它们的顺序可能并不正确:
>>> avgDists = [1, 8, 6, 9, 4]
>>> np.array(avgDists).argpartition(2)[:2] # indices of lowest 2 items
array([0, 4], dtype=int64)
>>> np.array(avgDists).argpartition(-2)[-2:] # indices of highest 2 items
array([1, 3], dtype=int64)
其他回答
可以使用翻转命令numpy.flipud()或numpy.fliplr()在使用argsort命令排序后按降序获取索引。那是我通常做的事。
而不是用np。Argsort你可以用np。Argpartition -如果你只需要最低/最高n个元素的索引。
这并不需要对整个数组进行排序,只需要对你需要的部分进行排序,但请注意“分区内的顺序”是未定义的,所以虽然它给出了正确的索引,但它们的顺序可能并不正确:
>>> avgDists = [1, 8, 6, 9, 4]
>>> np.array(avgDists).argpartition(2)[:2] # indices of lowest 2 items
array([0, 4], dtype=int64)
>>> np.array(avgDists).argpartition(-2)[-2:] # indices of highest 2 items
array([1, 3], dtype=int64)
考虑相等元素的顺序
如果你运行一个排序程序并且两个元素相等,那么顺序通常不会改变。然而,flip/[::-1]方法改变了相等元素的顺序。
>>> arr = np.array([3, 5, 4, 7, 3])
>>>
>>> np.argsort(arr)[::-1]
array([3, 1, 2, 4, 0]) # equal elements reorderd
>>> np.argsort(-arr)
array([3, 1, 2, 0, 4]) # equal elements not reorderd (compatible to other sorting)
出于兼容性原因,我更喜欢使用负数组的argsort方法。当arr表示更复杂元素的数字表示时,这一点尤其重要。
例子:
obj = ['street', 'house', 'bridge', 'station', 'rails']
arr = np.array([3, 5, 4, 7, 3]) # cost of obj in coins
免责声明:一个更常见的方法是解决上面的例子排序(list_of_tuples_obj_cost, key=lambda x: x[1])
另一种方法是在argsort的参数中只使用一个'-',例如:"df[np。Argsort (-df[:, 0])]",如果df是数据帧,你想要按第一列排序(由列号'0'表示)。适当地更改列名。当然,列必须是数字。
您可以创建数组的副本,然后将每个元素与-1相乘。 结果,前面最大的元素会变成最小的元素。 副本中最小的n个元素的折号就是原始文件中最大的n个元素。