我理解让步。但是生成器的send函数是做什么的呢?文件说:

generator.send(值) 恢复执行并向生成器函数“发送”一个值。value参数变成当前yield表达式的结果。send()方法返回生成器产生的下一个值,如果生成器退出而没有产生另一个值,则引发StopIteration。

这是什么意思?我以为value是生成器函数的输入?短语“send()方法返回生成器产生的下一个值”似乎也是yield的确切目的,它也返回生成器产生的下一个值。

有没有一个生成器利用send完成了yield不能完成的事情的例子?


当前回答

使用generator和send()的一些用例

使用send()的生成器允许:

记住执行的内部状态 我们走到哪一步了 我们数据的当前状态是什么 返回值序列 接收输入序列

下面是一些用例:

观察尝试遵循食谱

让我们有一个配方,它期望以某种顺序预先定义一组输入。

我们可以:

create a watched_attempt instance from the recipe let it get some inputs with each input return information about what is currently in the pot with each input check, that the input is the expected one (and fail if it is not) def recipe(): pot = [] action = yield pot assert action == ("add", "water") pot.append(action[1]) action = yield pot assert action == ("add", "salt") pot.append(action[1]) action = yield pot assert action == ("boil", "water") action = yield pot assert action == ("add", "pasta") pot.append(action[1]) action = yield pot assert action == ("decant", "water") pot.remove("water") action = yield pot assert action == ("serve") pot = [] yield pot

要使用它,首先创建watched_attempt实例:

>>> watched_attempt = recipe()                                                                         
>>> watched_attempt.next()                                                                                     
[]                                                                                                     

对.next()的调用是启动生成器执行所必需的。

返回值显示,我们的罐目前是空的。

现在按照食谱的要求做一些动作:

>>> watched_attempt.send(("add", "water"))                                                                     
['water']                                                                                              
>>> watched_attempt.send(("add", "salt"))                                                                      
['water', 'salt']                                                                                      
>>> watched_attempt.send(("boil", "water"))                                                                    
['water', 'salt']                                                                                      
>>> watched_attempt.send(("add", "pasta"))                                                                     
['water', 'salt', 'pasta']                                                                             
>>> watched_attempt.send(("decant", "water"))                                                                  
['salt', 'pasta']                                                                                      
>>> watched_attempt.send(("serve"))                                                                            
[] 

如我们所见,罐子终于空了。

万一,一个人不遵循配方,它会失败(什么可能是期望的结果观看 试着做点东西——刚知道我们在接到指示时没有足够注意。

>>> watched_attempt = running.recipe()                                                                         
>>> watched_attempt.next()                                                                                     
[]                                                                                                     
>>> watched_attempt.send(("add", "water"))                                                                     
['water']                                                                                              
>>> watched_attempt.send(("add", "pasta")) 

---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-21-facdf014fe8e> in <module>()
----> 1 watched_attempt.send(("add", "pasta"))

/home/javl/sandbox/stack/send/running.py in recipe()
     29
     30     action = yield pot
---> 31     assert action == ("add", "salt")
     32     pot.append(action[1])
     33

AssertionError:

注意,:

预期的步骤有一个线性序列 步骤可能会有所不同(有些是移除,有些是添加到锅中) 我们通过函数/生成器来实现这一切,不需要使用复杂的类或类似的东西 结构。

运行总数

我们可以使用生成器来跟踪发送给它的值的运行总数。

任何时候我们添加一个数字,输入的计数和总数返回(有效 之前的输入被发送到它的那一刻)。

from collections import namedtuple

RunningTotal = namedtuple("RunningTotal", ["n", "total"])


def runningtotals(n=0, total=0):
    while True:
        delta = yield RunningTotal(n, total)
        if delta:
            n += 1
            total += delta


if __name__ == "__main__":
    nums = [9, 8, None, 3, 4, 2, 1]

    bookeeper = runningtotals()
    print bookeeper.next()
    for num in nums:
        print num, bookeeper.send(num)

输出如下所示:

RunningTotal(n=0, total=0)
9 RunningTotal(n=1, total=9)
8 RunningTotal(n=2, total=17)
None RunningTotal(n=2, total=17)
3 RunningTotal(n=3, total=20)
4 RunningTotal(n=4, total=24)
2 RunningTotal(n=5, total=26)
1 RunningTotal(n=6, total=27)

其他回答

itr.send(None)和next(itr)是一样的你所做的是在生成器中给出yield给出的值。

下面的例子清楚地说明了这一点,以及如何更实际地使用它。

def iterator_towards(dest=100):
    value = 0
    while True:
        n = yield value
        if n is not None:
            dest = n
        if dest > value:
            value += 1
        elif dest < value:
            value -= 1
        else:
            return

num = iterator_towards()
for i in num:
    print(i)
    if i == 5:
        num.send(0)

这将打印:

0
1
2
3
4
5
3
2
1
0

i == 5处的代码告诉它发送0。这不是iterator_toward中的None,所以它改变了dest的值,然后我们迭代到0。

但是请注意,在值5之后没有值4。这是因为.send(0)的性质是它被输出值为4,而不输出。

如果我们添加一个continue,我们可以重新得到相同的值。

def iterator_towards(dest=100):
    value = 0
    while True:
        n = yield value
        if n is not None:
            dest = n
            continue
        if dest > value:
            value += 1
        elif dest < value:
            value -= 1
        else:
            return

这将允许您迭代一个列表,但也动态地发送它的新目标值。

“yield”这个词有两个意思:生产某物(例如,生产玉米),和停下来让别人/事情继续(例如,汽车让行人)。这两个定义都适用于Python的yield关键字;生成器函数的特殊之处在于,与常规函数不同,值可以在仅暂停而不是终止生成器函数的情况下“返回”给调用者。

It is easiest to imagine a generator as one end of a bidirectional pipe with a "left" end and a "right" end; this pipe is the medium over which values are sent between the generator itself and the generator function's body. Each end of the pipe has two operations: push, which sends a value and blocks until the other end of the pipe pulls the value, and returns nothing; and pull, which blocks until the other end of the pipe pushes a value, and returns the pushed value. At runtime, execution bounces back and forth between the contexts on either side of the pipe -- each side runs until it sends a value to the other side, at which point it halts, lets the other side run, and waits for a value in return, at which point the other side halts and it resumes. In other words, each end of the pipe runs from the moment it receives a value to the moment it sends a value.

The pipe is functionally symmetric, but -- by convention I'm defining in this answer -- the left end is only available inside the generator function's body and is accessible via the yield keyword, while the right end is the generator and is accessible via the generator's send function. As singular interfaces to their respective ends of the pipe, yield and send do double duty: they each both push and pull values to/from their ends of the pipe, yield pushing rightward and pulling leftward while send does the opposite. This double duty is the crux of the confusion surrounding the semantics of statements like x = yield y. Breaking yield and send down into two explicit push/pull steps will make their semantics much more clear:

Suppose g is the generator. g.send pushes a value leftward through the right end of the pipe. Execution within the context of g pauses, allowing the generator function's body to run. The value pushed by g.send is pulled leftward by yield and received on the left end of the pipe. In x = yield y, x is assigned to the pulled value. Execution continues within the generator function's body until the next line containing yield is reached. yield pushes a value rightward through the left end of the pipe, back up to g.send. In x = yield y, y is pushed rightward through the pipe. Execution within the generator function's body pauses, allowing the outer scope to continue where it left off. g.send resumes and pulls the value and returns it to the user. When g.send is next called, go back to Step 1.

虽然是循环的,但这个过程确实有一个开始:当g.e send(None)——这是next(g)的缩写——第一次被调用时(向第一个send调用传递None以外的东西是非法的)。它可能有一个终点:当在生成器函数体中没有更多的yield语句要达到时。

Do you see what makes the yield statement (or more accurately, generators) so special? Unlike the measly return keyword, yield is able to pass values to its caller and receive values from its caller all without terminating the function it lives in! (Of course, if you do wish to terminate a function -- or a generator -- it's handy to have the return keyword as well.) When a yield statement is encountered, the generator function merely pauses, and then picks back up right where it left off upon being sent another value. And send is just the interface for communicating with the inside of a generator function from outside it.

如果我们真的想要尽可能地打破这个推/拉/管道的类比,我们最终会得到下面的伪代码,除了步骤1-5之外,yield和send是同一个硬币管道的两面:

right_end.push(None) # the first half of g.send; sending None is what starts a generator right_end.pause() left_end.start() initial_value = left_end.pull() if initial_value is not None: raise TypeError("can't send non-None value to a just-started generator") left_end.do_stuff() left_end.push(y) # the first half of yield left_end.pause() right_end.resume() value1 = right_end.pull() # the second half of g.send right_end.do_stuff() right_end.push(value2) # the first half of g.send (again, but with a different value) right_end.pause() left_end.resume() x = left_end.pull() # the second half of yield goto 6

关键的转换是我们将x = yield y和value1 = g.e send(value2)分别分割为两个语句:left_end.push(y)和x = left_end.pull();和value1 = right_end.pull()和right_end.push(value2)。yield关键字有两种特殊情况:x = yield和yield y。它们分别是语法糖,对于x = yield None和_ = yield y #丢弃值。

有关通过管道发送值的精确顺序的具体细节,请参见下面。


下面是上面的一个相当长的具体模型。首先,应该首先注意,对于任何生成器g, next(g)完全等价于g.e send(None)。考虑到这一点,我们可以只关注send是如何工作的,只讨论如何使用send来改进生成器。

假设我们有

def f(y):  # This is the "generator function" referenced above
    while True:
        x = yield y
        y = x
g = f(1)
g.send(None)  # yields 1
g.send(2)     # yields 2

现在,f的定义大致是以下普通(非生成器)函数:

def f(y):
    bidirectional_pipe = BidirectionalPipe()
    left_end = bidirectional_pipe.left_end
    right_end = bidirectional_pipe.right_end

    def impl():
        initial_value = left_end.pull()
        if initial_value is not None:
            raise TypeError(
                "can't send non-None value to a just-started generator"
            )

        while True:
            left_end.push(y)
            x = left_end.pull()
            y = x

    def send(value):
        right_end.push(value)
        return right_end.pull()

    right_end.send = send

    # This isn't real Python; normally, returning exits the function. But
    # pretend that it's possible to return a value from a function and then
    # continue execution -- this is exactly the problem that generators were
    # designed to solve!
    return right_end
    impl()

在f的这个变换中发生了以下情况:

We've moved the implementation into a nested function. We've created a bidirectional pipe whose left_end will be accessed by the nested function and whose right_end will be returned and accessed by the outer scope -- right_end is what we know as the generator object. Within the nested function, the very first thing we do is check that left_end.pull() is None, consuming a pushed value in the process. Within the nested function, the statement x = yield y has been replaced by two lines: left_end.push(y) and x = left_end.pull(). We've defined the send function for right_end, which is the counterpart to the two lines we replaced the x = yield y statement with in the previous step.

在这个幻想世界中,函数可以在返回后继续执行,g被赋值为right_end,然后调用impl()。所以在上面的例子中,如果我们一行一行地执行,大概会发生以下情况:

left_end = bidirectional_pipe.left_end
right_end = bidirectional_pipe.right_end

y = 1  # from g = f(1)

# None pushed by first half of g.send(None)
right_end.push(None)
# The above push blocks, so the outer scope halts and lets `f` run until
# *it* blocks

# Receive the pushed value, None
initial_value = left_end.pull()

if initial_value is not None:  # ok, `g` sent None
    raise TypeError(
        "can't send non-None value to a just-started generator"
    )

left_end.push(y)
# The above line blocks, so `f` pauses and g.send picks up where it left off

# y, aka 1, is pulled by right_end and returned by `g.send(None)`
right_end.pull()

# Rinse and repeat
# 2 pushed by first half of g.send(2)
right_end.push(2)
# Once again the above blocks, so g.send (the outer scope) halts and `f` resumes

# Receive the pushed value, 2
x = left_end.pull()
y = x  # y == x == 2

left_end.push(y)
# The above line blocks, so `f` pauses and g.send(2) picks up where it left off

# y, aka 2, is pulled by right_end and returned to the outer scope
right_end.pull()

x = left_end.pull()
# blocks until the next call to g.send

这精确地映射到上面的16步伪代码。

还有一些其他细节,比如错误是如何传播的,到达生成器的末尾时会发生什么(管道关闭),但这应该清楚使用send时基本控制流是如何工作的。

使用这些相同的糖化规则,让我们看看两个特殊情况:

def f1(x):
    while True:
        x = yield x

def f2():  # No parameter
    while True:
        x = yield x

在大多数情况下,它们的糖化方式与f相同,唯一的区别是yield语句如何转换:

def f1(x):
    # ... set up pipe

    def impl():
        # ... check that initial sent value is None

        while True:
            left_end.push(x)
            x = left_end.pull()

    # ... set up right_end


def f2():
    # ... set up pipe

    def impl():
        # ... check that initial sent value is None

        while True:
            left_end.push(x)
            x = left_end.pull()

    # ... set up right_end

在第一种方法中,传递给f1的值首先被推(yield),然后所有拉(发送)的值都被推(yield)回来。在第二种情况下,x在第一次push时(还)没有值,因此引发UnboundLocalError。

send()方法控制yield表达式左边的值。

为了理解yield的不同之处以及它所代表的值,让我们首先快速刷新python代码被求值的顺序。

第6.15节评估命令

Python从左到右计算表达式。注意,在计算赋值时,右边的值比左边的值先计算。

所以表达式a = b首先求右边的值。

如下所示,a[p('left')] = p('right')首先计算右边的值。

>>> def p(side):
...     print(side)
...     return 0
... 
>>> a[p('left')] = p('right')
right
left
>>> 
>>> 
>>> [p('left'), p('right')]
left
right
[0, 0]

收益率是做什么的?, yield将暂停函数的执行并返回给调用者,并在暂停之前停止的同一位置恢复执行。

死刑到底在哪里暂缓执行?你可能已经猜到了…… 在yield表达式的左右之间暂停执行。因此new_val = yield old_val执行在=号处停止,并且右边的值(挂起之前,也是返回给调用者的值)可能与左边的值(恢复执行后分配的值)不同。

Yield产生两个值,一个在右边,另一个在左边。

如何控制yield表达式左边的值?通过.send()方法。

6.2.9. 产量表达式

恢复后的yield表达式的值取决于恢复执行的方法。如果使用__next__()(通常通过for或next()内置函数),则结果为None。否则,如果使用send(),则结果将是传递给该方法的值。

这可能会对某些人有所帮助。这是一个不受发送函数影响的生成器。它在实例化时接受number参数,不受send的影响:

>>> def double_number(number):
...     while True:
...         number *=2 
...         yield number
... 
>>> c = double_number(4)
>>> c.send(None)
8
>>> c.next()
16
>>> c.next()
32
>>> c.send(8)
64
>>> c.send(8)
128
>>> c.send(8)
256

下面是你如何使用send来执行相同类型的函数,所以在每次迭代中你都可以改变number的值:

def double_number(number):
    while True:
        number *= 2
        number = yield number

下面是它的样子,你可以看到为number发送一个新值会改变结果:

>>> def double_number(number):
...     while True:
...         number *= 2
...         number = yield number
...
>>> c = double_number(4)
>>> 
>>> c.send(None)
8
>>> c.send(5) #10
10
>>> c.send(1500) #3000
3000
>>> c.send(3) #6
6

你也可以在for循环中这样写:

for x in range(10):
    n = c.send(n)
    print n

要获得更多帮助,请查看这个很棒的教程。

这些也让我很困惑。下面是我做的一个例子,当我试图建立一个以交替顺序(屈服,接受,屈服,接受)产生和接受信号的生成器时……

def echo_sound():

    thing_to_say = '<Sound of wind on cliffs>'
    while True:
        thing_to_say = (yield thing_to_say)
        thing_to_say = '...'.join([thing_to_say]+[thing_to_say[-6:]]*2)
        yield None  # This is the return value of send.

gen = echo_sound()

print 'You are lost in the wilderness, calling for help.'

print '------'
in_message = gen.next()
print 'You hear: "{}"'.format(in_message)
out_message = 'Hello!'
print 'You yell "{}"'.format(out_message)
gen.send(out_message)

print '------'
in_message = gen.next()
print 'You hear: "{}"'.format(in_message)
out_message = 'Is anybody out there?'
print 'You yell "{}"'.format(out_message)
gen.send(out_message)

print '------'
in_message = gen.next()
print 'You hear: "{}"'.format(in_message)
out_message = 'Help!'
print 'You yell "{}"'.format(out_message)
gen.send(out_message)

输出结果为:

You are lost in the wilderness, calling for help.
------
You hear: "<Sound of wind on cliffs>"
You yell "Hello!"
------
You hear: "Hello!...Hello!...Hello!"
You yell "Is anybody out there?"
------
You hear: "Is anybody out there?...there?...there?"
You yell "Help!"