我需要一个滚动窗口(又名滑动窗口)可迭代的序列/迭代器/生成器。(默认的Python迭代可以被认为是一种特殊情况,其中窗口长度为1。)我目前正在使用以下代码。我怎样才能做得更优雅和/或更有效?

def rolling_window(seq, window_size):
    it = iter(seq)
    win = [it.next() for cnt in xrange(window_size)] # First window
    yield win
    for e in it: # Subsequent windows
        win[:-1] = win[1:]
        win[-1] = e
        yield win

if __name__=="__main__":
    for w in rolling_window(xrange(6), 3):
        print w

"""Example output:   
   [0, 1, 2]
   [1, 2, 3]
   [2, 3, 4]
   [3, 4, 5]
"""

对于window_size == 2的特定情况(即,在序列中迭代相邻的重叠对),请参见如何从列表中迭代重叠(当前,下一个)值对?


当前回答

多个迭代器!

def window(seq, size, step=1):
    # initialize iterators
    iters = [iter(seq) for i in range(size)]
    # stagger iterators (without yielding)
    [next(iters[i]) for j in range(size) for i in range(-1, -j-1, -1)]
    while(True):
        yield [next(i) for i in iters]
        # next line does nothing for step = 1 (skips iterations for step > 1)
        [next(i) for i in iters for j in range(step-1)]

next(it)在序列结束时引发StopIteration,出于一些我无法理解的很酷的原因,yield语句在这里除外它,函数返回,忽略没有形成完整窗口的剩余值。

无论如何,这是目前为止行数最少的解决方案,它唯一的要求是seq实现__iter__或__getitem__,并且除了@dansalmo的解决方案之外,不依赖于itertools或集合:)

其他回答

如何使用以下方法:

mylist = [1, 2, 3, 4, 5, 6, 7]

def sliding_window(l, window_size=2):
    if window_size > len(l):
        raise ValueError("Window size must be smaller or equal to the number of elements in the list.")

    t = []
    for i in xrange(0, window_size):
        t.append(l[i:])

    return zip(*t)

print sliding_window(mylist, 3)

输出:

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 7)]

只是一个简短的贡献。

由于当前的python文档在itertool示例中没有“window”(即,在http://docs.python.org/library/itertools.html的底部),这里有一个基于 石斑鱼的代码,这是给出的例子之一:

import itertools as it
def window(iterable, size):
    shiftedStarts = [it.islice(iterable, s, None) for s in xrange(size)]
    return it.izip(*shiftedStarts)

基本上,我们创建了一系列切片迭代器,每个迭代器的起点都在前面一个位置。然后,我们把它们拉在一起。注意,这个函数返回一个生成器(它本身不是直接的生成器)。

就像上面的appendingelement和advingiterator版本一样,性能(即,哪个是最好的)随列表大小和窗口大小而变化。我喜欢这个,因为它是一个两行代码(它也可以是一行代码,但我更喜欢命名概念)。

事实证明上面的代码是错误的。如果传递给iterable的参数是一个序列则有效,但如果它是一个迭代器则无效。如果它是一个迭代器,那么在islice调用之间共享相同的迭代器(但不是tee - d),这将严重破坏事情。

下面是一些固定的代码:

import itertools as it
def window(iterable, size):
    itrs = it.tee(iterable, size)
    shiftedStarts = [it.islice(anItr, s, None) for s, anItr in enumerate(itrs)]
    return it.izip(*shiftedStarts)

另外,书里还有一个版本。这个版本不是复制一个迭代器,然后多次向前复制,而是在开始位置向前移动时成对复制每个迭代器。因此,迭代器t既提供了起点为t的“完整”迭代器,也提供了创建迭代器t + 1的基础:

import itertools as it
def window4(iterable, size):
    complete_itr, incomplete_itr = it.tee(iterable, 2)
    iters = [complete_itr]
    for i in xrange(1, size):
        incomplete_itr.next()
        complete_itr, incomplete_itr = it.tee(incomplete_itr, 2)
        iters.append(complete_itr)
    return it.izip(*iters)

在旧版本的Python文档中有一个itertools示例:

from itertools import islice

def window(seq, n=2):
    "Returns a sliding window (of width n) over data from the iterable"
    "   s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ...                   "
    it = iter(seq)
    result = tuple(islice(it, n))
    if len(result) == n:
        yield result
    for elem in it:
        result = result[1:] + (elem,)
        yield result

文档中的那个更简洁一点,我想它使用了itertools来达到更好的效果。


如果你的迭代器是一个简单的列表/元组,用指定的窗口大小滑动它的简单方法是:

seq = [0, 1, 2, 3, 4, 5]
window_size = 3

for i in range(len(seq) - window_size + 1):
    print(seq[i: i + window_size])

输出:

[0, 1, 2]
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]

深度学习中滑动窗口数据的优化函数

def SlidingWindow(X, window_length, stride):
    indexer = np.arange(window_length)[None, :] + stride*np.arange(int(len(X)/stride)-window_length+4)[:, None]
    return X.take(indexer)

应用于多维数组

import numpy as np
def SlidingWindow(X, window_length, stride1):
    stride=  X.shape[1]*stride1
    window_length = window_length*X.shape[1]
    indexer = np.arange(window_length)[None, :] + stride1*np.arange(int(len(X)/stride1)-window_length-1)[:, None]
    return X.take(indexer)

我喜欢t ():

from itertools import tee, izip

def window(iterable, size):
    iters = tee(iterable, size)
    for i in xrange(1, size):
        for each in iters[i:]:
            next(each, None)
    return izip(*iters)

for each in window(xrange(6), 3):
    print list(each)

给:

[0, 1, 2]
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]