我一直在重读Docker文档,试图理解Docker和完整VM之间的区别。它是如何设法提供一个完整的文件系统、隔离的网络环境等而不那么沉重的?
为什么将软件部署到Docker映像(如果这是正确的术语)比简单地部署到一致的生产环境更容易?
我一直在重读Docker文档,试图理解Docker和完整VM之间的区别。它是如何设法提供一个完整的文件系统、隔离的网络环境等而不那么沉重的?
为什么将软件部署到Docker映像(如果这是正确的术语)比简单地部署到一致的生产环境更容易?
当前回答
Docker最初使用LinuX Containers(LXC),但后来改用runC(以前称为libcontainer),后者与主机在同一操作系统中运行。这允许它共享大量主机操作系统资源。此外,它使用分层文件系统(AuFS)并管理网络。
AuFS是一个分层文件系统,因此可以将只读部分和写部分合并在一起。可以将操作系统的公共部分设置为只读(并在所有容器中共享),然后为每个容器提供自己的装载以供编写。
假设您有一个1GB的容器映像;如果要使用完整的虚拟机,则需要有1 GB x所需数量的虚拟机。使用Docker和AuFS,您可以在所有容器之间共享1GB的空间,如果您有1000个容器,那么容器操作系统的空间可能只有1GB多一点(假设它们都运行同一个操作系统映像)。
一个完整的虚拟化系统得到了它自己的一组资源分配,并且实现了最小的共享。你得到了更多的隔离,但它更重(需要更多的资源)。使用Docker可以减少隔离,但容器是轻量级的(需要更少的资源)。因此,您可以轻松地在主机上运行数千个容器,而且它甚至不会闪烁。试着用Xen做这件事,除非你有一个非常大的主机,否则我认为这是不可能的。
一个完整的虚拟化系统通常需要几分钟的启动时间,而Docker/LXC/runC容器需要几秒钟,甚至不到一秒钟。
每种类型的虚拟化系统都有利弊。如果您希望使用有保证的资源进行完全隔离,那么完整的VM是最佳选择。如果您只想将进程彼此隔离,并希望在一个大小合理的主机上运行大量进程,那么Docker/LXC/runC似乎是一个不错的选择。
有关更多信息,请查看这组博客文章,它们很好地解释了LXC的工作原理。
为什么将软件部署到docker映像(如果这是正确的术语)比简单地部署到一致的生产环境更容易?
部署一致的生产环境说起来容易做起来难。即使您使用Chef和Puppet等工具,主机和环境之间也总是会有操作系统更新和其他变化。
Docker使您能够将操作系统快照到共享映像中,并使其易于在其他Docker主机上部署。本地、dev、qa、prod等:都是相同的图像。当然,你可以用其他工具来完成这项工作,但不是那么容易或快速。
这非常适合测试;假设您有数千个测试需要连接到数据库,每个测试都需要数据库的原始副本,并将对数据进行更改。经典的方法是在每次测试后使用自定义代码或使用Flyway等工具重置数据库-这可能非常耗时,意味着测试必须连续运行。然而,使用Docker,您可以创建数据库的映像,并为每个测试运行一个实例,然后并行运行所有测试,因为您知道它们都将针对数据库的同一快照运行。由于测试是在Docker容器中并行运行的,它们可以在同一时间在同一个盒子上运行,并且应该完成得更快。尝试使用完整的虚拟机执行此操作。
来自评论。。。
有趣的我想我仍然对“快照操作系统”的概念感到困惑。如果不制作操作系统的图像,那么如何做到这一点?
好吧,看看我能不能解释一下。您从一个基本图像开始,然后进行更改,并使用docker提交这些更改,然后创建一个图像。此图像仅包含与基础的差异。当你想运行你的镜像时,你也需要基础,它使用一个分层文件系统将你的镜像分层在基础之上:如上所述,Docker使用AuFS。AuFS将不同的层合并在一起,您可以得到所需的内容;你只需要运行它。你可以继续添加越来越多的图像(层),它将继续只保存差异。由于Docker通常基于注册表中的现成图像构建,因此您很少需要自己“快照”整个操作系统。
其他回答
他们都很不同。Docker是轻量级的,使用LXC/libcontainer(它依赖于内核命名空间和cgroups),并且没有机器/硬件仿真,如管理程序、KVM。Xen,它们很重。
Docker和LXC更多地用于沙箱、容器化和资源隔离。它使用主机操作系统(目前只有Linux内核)的克隆API,为IPC、NS(装载)、网络、PID、UTS等提供命名空间。
内存、I/O、CPU等呢。?这是使用cgroups来控制的,在cgroups中,您可以创建具有特定资源(CPU、内存等)规范/限制的组,并将进程放入其中。在LXC之上,Docker提供了一个存储后端(http://www.projectatomic.io/docs/filesystems/)例如,联合安装文件系统,您可以在不同的安装名称空间之间添加层和共享层。
这是一个强大的功能,其中基本映像通常是只读的,只有当容器修改层中的某些内容时,才会将某些内容写入读写分区(也称为写时复制)。它还提供了许多其他包装,如图像的注册和版本控制。
对于普通的LXC,您需要附带一些rootfs或共享rootfs,当共享时,这些更改会反映在其他容器上。由于这些新增功能,Docker比LXC更受欢迎。LXC在嵌入式环境中很受欢迎,用于围绕暴露于外部实体(如网络和UI)的进程实现安全性。Docker在需要一致生产环境的云多租户环境中非常流行。
一个普通的虚拟机(例如VirtualBox和VMware)使用一个虚拟机管理程序,相关技术要么有专用的固件,成为第一个操作系统(主机操作系统或客户操作系统0)的第一层,要么有一个在主机操作系统上运行的软件,为客户操作系统提供硬件仿真,如CPU、USB/附件、内存、网络等。截至2015年,VM在高安全性多租户环境中仍然很受欢迎。
Docker/LXC几乎可以在任何便宜的硬件上运行(只要你有更新的内核,少于1 GB的内存也可以),而正常的VM需要至少2 GB的内存等,才能使用它进行任何有意义的操作。但主机操作系统上的Docker支持在Windows(截至2014年11月)等操作系统中不可用,在Windows、Linux和Mac上可以运行各种类型的VM。
这是docker/rightscale的照片:
资料来源:Kubernetes in Action。
好答案。为了获得容器与VM的图像表示,请查看下面的一个。
来源
Feature |
Virtual Machine |
(Docker) Containers |
---|---|---|
OS | Each VM Does contains an Operating System |
Each Docker Container Does Not contains an Operating System |
H/W | Each VM contain a virtual copy of the hardware that OS requires to run. | There is No virtualization of H/W with containers |
Weight | VM's are heavy -- reason sited above-- | containers are lightweight and, thus, fast |
Required S/W | Virtuliazation achieve using software called a hypervisor | Containerzation achieve using software called a Docker |
Core | Virtual machines provide virtual hardware (or hardware on which an operating system and other programs can be installed) | Docker containers don’t use any hardware virtualization. **It helps to use container |
Abstraction | Virtual machines provide hardware abstractions so you can run multiple operating systems. | Containers provide OS abstractions so you can run multiple containers. |
Boot-Time | It takes a long time (often minutes) to create and require significant resource overhead because they run a whole operating system in addition to the software you want to use. | It takes less time because Programs running inside Docker containers interface directly with the host’s Linux kernel. |
关于:-
“为什么将软件部署到docker映像比简单部署到一致的生产环境?"
大多数软件都部署到许多环境中,通常至少部署以下三种环境:
个人开发者PC共享开发人员环境单个测试仪PC共享测试环境QA环境UAT环境负载/性能测试实时登台生产档案文件
还需要考虑以下因素:
根据工作的性质,开发人员,甚至测试人员,都将拥有微妙的或完全不同的PC配置开发人员通常可以在公司或企业标准化规则无法控制的PC上进行开发(例如,在自己的机器上开发的自由职业者(通常是远程开发的),或未“受雇”或“签约”以某种方式配置其PC的开源项目的贡献者)某些环境将由负载平衡配置中的固定数量的多台计算机组成许多生产环境将根据流量级别动态(或“弹性”)创建和销毁基于云的服务器
正如你所看到的,一个组织的服务器总数很少是一位数,通常是三位数,而且很容易更高。
这一切都意味着,仅仅因为巨大的容量(即使是在绿地场景中),首先创建一致的环境就已经足够困难了,但鉴于服务器数量众多、新服务器的添加(动态或手动)、o/s供应商、防病毒供应商、浏览器供应商等的自动更新,由开发人员或服务器技术人员执行的手动软件安装或配置更改等。让我重复一遍-保持环境一致几乎是不可能的(没有双关语)(好吧,对于纯粹主义者来说,这是可以做到的,但这需要大量的时间、精力和纪律,这正是为什么VM和容器(例如Docker)最初被设计出来的原因)。
因此,请更像这样思考您的问题:“鉴于保持所有环境一致性的极端困难,即使考虑到学习曲线,将软件部署到docker映像中是否更容易?”。我想你会发现答案总是“是”——但只有一种方法可以找到,在Stack Overflow上发布这个新问题。