我一直在重读Docker文档,试图理解Docker和完整VM之间的区别。它是如何设法提供一个完整的文件系统、隔离的网络环境等而不那么沉重的?

为什么将软件部署到Docker映像(如果这是正确的术语)比简单地部署到一致的生产环境更容易?


当前回答

对于虚拟机,我们有一台服务器,在该服务器上有一个主机操作系统,然后我们有一个管理程序。然后在该虚拟机管理程序之上运行,我们在该服务器上有任意数量的来宾操作系统,其中包含应用程序及其从属二进制文件和库。它带来了一个完整的客户操作系统,非常重量级。此外,您可以在每个物理机器上实际投入多少也是有限制的。

另一方面,Docker容器略有不同。我们有服务器。我们有主机操作系统。但在本例中,我们使用的是Docker引擎,而不是管理程序。在这种情况下,我们并没有带来一个完整的客户操作系统。我们带来了一个非常薄的操作系统层,容器可以与主机操作系统进行对话,以获得那里的内核功能。这使得我们可以拥有一个非常轻的容器。

它所包含的只有应用程序代码以及所需的任何二进制文件和库。如果您希望这些二进制文件和库也可以在不同的容器中共享。这使我们能够做的事情有很多。它们的启动时间要快得多。你不能像那样在几秒钟内建立一个虚拟机。同样地,也要尽快地把它们取下来。。所以我们可以很快地放大和缩小,稍后我们将对此进行研究。

每个容器都认为它在自己的操作系统副本上运行。它有自己的文件系统,自己的注册表等等,这是一种谎言。它实际上是虚拟化的。

其他回答

有三种不同的设置提供了运行应用程序的堆栈(这将帮助我们认识到容器是什么,以及是什么使它比其他解决方案更强大):

1) Traditional Servers(bare metal)
2) Virtual machines (VMs)
3) Containers

1) 传统的服务器堆栈由运行操作系统和应用程序的物理服务器组成。

优势:

原始资源的利用隔离

缺点:

部署时间非常慢昂贵的浪费的资源难以扩展难以迁移复杂的配置

2) VM堆栈由运行操作系统的物理服务器和管理虚拟机、共享资源和网络接口的管理程序组成。每个Vm运行一个客户操作系统、一个应用程序或一组应用程序。

优势:

善用资源易于扩展易于备份和迁移成本效益灵活性

缺点:

资源分配有问题供应商锁定复杂的配置

3) 容器设置与其他堆栈的主要区别是基于容器的虚拟化使用主机操作系统的内核来管理多个孤立的来宾实例。这些来宾实例称为容器。主机可以是物理服务器或VM。

优势:

隔离轻量的资源有效易于迁移安全低开销镜像生产和开发环境

缺点:

相同的体系结构资源密集型应用网络和安全问题。

通过将容器设置与之前的设置进行比较,我们可以得出结论,容器化是迄今为止我们所知的最快、最有效的资源和最安全的设置。容器是运行应用程序的独立实例。Docker以某种方式旋转容器,层使用默认存储驱动程序(Overlay驱动程序)获得运行时内存,这些驱动程序在几秒钟内运行,一旦我们提交到容器中,就会在其上创建写时复制层,从而为容器的执行提供动力。如果是VM,则需要大约一分钟的时间将所有内容加载到虚拟化环境中。这些轻量级实例可以很容易地替换、重建和移动。这使我们能够镜像生产和开发环境,并在CI/CD过程中提供了巨大的帮助。容器所能提供的优势是如此引人注目,它们肯定会继续存在。

容器将库和软件包与系统隔离,以便您可以安装相同软件和库的不同版本而不发生冲突。它使用最小的存储空间和内存,使用相同的基本操作系统内核和可用的库几乎没有开销,如果可能的话,差异很小。您可以直接或间接地将硬件暴露给容器,以便可以使用加速(如gpu)进行计算。

在实践中,您可以使用预制容器的docker。您可以安装它们并在一条线上运行它们。安装tensorflow gpu和docker run-it tensorflow gpu一样简单。虽然我没有偶然发现许多lxd(lxc容器)的预制容器,但我发现它们更容易定制,更稳定和性能更好。

容器和VM都可以用来分配负载。但由于容器几乎没有开销,因此容器管理软件专注于创建容器集群,以便您轻松地将它们(从而将负载)分配给金属机器。

真实生活示例:

假设您需要50多种类型的计算环境和50种类型的服务,如mysql、网络托管和基于云的服务(如jenkins和对象存储),并且您有50多种不同的裸机服务器。这是一个典型的学院环境。您需要高效地使用资源,并且需要高可用性。当一台服务器停机时,用户应该不会遇到任何问题。为了解决这个问题,您所做的基本上是在所有服务器上安装所有类型的容器。并将负载分配给所有金属机器。当一种类型的容器需要更多时,可以在一台或多台裸机上自动生成更多容器。因此,许多不同的用户可以连续灵活地使用不同的服务和环境。

在该设置中,假设有100名学生同时使用该系统。其中95人使用服务器进行基本服务,如检查GPA、课程、图书馆数据库等,但其中5人正在进行5种不同类型的工程模拟。您将看到49台裸机服务器完全专用于工程仿真,每台服务器都有5种不同类型的计算容器,每种计算容器都与之相匹配,但与20%的硬件资源使用相平衡。当你为基本任务增加2500名学生时,这将使用所有裸机的5%。其余部分将用于计算。

因此,提供这种灵活性优势的容器最重要的区别特征是:

准备好部署预制容器,几乎没有开销,可快速繁殖具有实时可调整配额

使用.cpu_allowencess、.ram_allowances或直接cgroup。Kubernetes为您提供所有这些服务。在摆弄了docker和lxd之后,你可能想看看它。

我在生产环境和登台中使用过Docker。当你习惯了它,你会发现它对于构建一个多容器和隔离环境非常强大。

Docker是基于LXC(Linux容器)开发的,在许多Linux发行版中都能完美运行,尤其是Ubuntu。

Docker容器是隔离的环境。当您在Docker容器中发出top命令时,可以看到它,Docker容器是从Docker映像创建的。

此外,由于dockerFile配置,它们非常轻便和灵活。

例如,您可以创建一个Docker映像并配置一个DockerFile,然后告诉它,例如,当它运行时,运行wget“this”,apt-get“that”,运行“some shell script”,设置环境变量等等。

在微服务项目和架构中,Docker是一项非常可行的资产。您可以通过Docker、Docker swarm、Kubernetes和Docker Compose实现可伸缩性、弹性和弹性。

Docker的另一个重要问题是Docker Hub及其社区。例如,我使用Prometheus、Grafana、PrometheusJMXExporter和Docker实现了一个用于监控kafka的生态系统。

为此,我为zookeeper、kafka、Prometheus、Grafana和jmx收集器下载了已配置的Docker容器,然后使用YAML文件为其中一些容器安装了自己的配置,我更改了Docker容器中的一些文件和配置,并在一台机器上使用多容器Docker构建了一个用于监控kafka的完整系统,该系统具有隔离性、可扩展性和弹性,该架构可以轻松移动到多个服务器中。

除了Docker Hub站点之外,还有一个名为quay.io的站点,您可以使用它在那里创建自己的Docker图像仪表板,并将其推送到码头。您甚至可以将Docker图像从DockerHub导入码头,然后在自己的机器上从码头运行。

注意:学习Docker一开始看起来既复杂又困难,但当你习惯了它之后,你就不能没有它了。

我记得在使用Docker的第一天,我发出了错误的命令,或者错误地删除了我的容器和所有数据和配置。

好答案。为了获得容器与VM的图像表示,请查看下面的一个。

来源

1.重量轻

这可能是许多码头工人学习者的第一印象。

首先,docker映像通常比VM映像小,因此易于构建、复制和共享。

第二,Docker容器可以在几毫秒内启动,而VM可以在几秒钟内启动。

2.分层文件系统

这是Docker的另一个关键特性。图像具有图层,不同的图像可以共享图层,从而更节省空间,构建速度更快。

如果所有容器都使用Ubuntu作为它们的基本映像,那么不是每个映像都有自己的文件系统,而是共享相同的下划线Ubuntu文件,并且只在它们自己的应用程序数据上有所不同。

3.共享OS内核

将容器视为进程!

在主机上运行的所有容器实际上都是一堆具有不同文件系统的进程。它们共享相同的OS内核,只封装系统库和依赖项。

这在大多数情况下都很好(没有额外的OS内核维护),但如果容器之间需要严格隔离,则可能会出现问题。

为什么重要?

所有这些似乎都是进步,而不是革命。好吧,数量的积累导致质量的转变。

考虑应用程序部署。如果我们想部署一个新的软件(服务)或升级一个,最好是更改配置文件和进程,而不是创建一个新VM。因为创建一个具有更新服务的VM,测试它(开发人员和QA之间共享),部署到生产需要几个小时,甚至几天。如果出了什么问题,你必须重新开始,浪费更多的时间。因此,使用配置管理工具(木偶、盐堆、厨师等)安装新软件,最好下载新文件。

说到docker,不可能使用新创建的docker容器来替换旧容器。维护更容易!构建一个新映像,与QA共享,测试,部署它只需要几分钟(如果一切都是自动化的),最坏的情况下需要几个小时。这被称为不可变基础设施:不要维护(升级)软件,而是创建一个新的。

它改变了服务的交付方式。我们需要应用程序,但必须维护VM(这是一个难题,与我们的应用程序无关)。Docker让你专注于应用程序,让一切变得流畅。