我有一个数据框架df:

>>> df
                  sales  discount  net_sales    cogs
STK_ID RPT_Date                                     
600141 20060331   2.709       NaN      2.709   2.245
       20060630   6.590       NaN      6.590   5.291
       20060930  10.103       NaN     10.103   7.981
       20061231  15.915       NaN     15.915  12.686
       20070331   3.196       NaN      3.196   2.710
       20070630   7.907       NaN      7.907   6.459

然后我想删除具有特定序列号的行,这些序列号在列表中表示,假设这里是[1,2,4],然后左:

                  sales  discount  net_sales    cogs
STK_ID RPT_Date                                     
600141 20060331   2.709       NaN      2.709   2.245
       20061231  15.915       NaN     15.915  12.686
       20070630   7.907       NaN      7.907   6.459

什么函数可以做到这一点?


当前回答

只使用Index参数删除行:-

df.drop(index = 2, inplace = True)

多行:-

df.drop(index=[1,3], inplace = True)

其他回答

我用了一个更简单的方法——只用了两步。

用不需要的行/数据创建一个数据框架。 使用这个不需要的数据帧的索引来删除原始数据帧中的行。

例子: 假设你有一个数据框架df,它有很多列,包括'Age',它是一个整数。现在让我们假设你想删除所有以'Age'为负数的行。

df_age_negative = df[ df['Age'] < 0 ] # Step 1
df = df.drop(df_age_negative.index, axis=0) # Step 2

希望这是更简单的,并帮助你。

这里有一个具体的例子,我想展示。假设在某些行中有许多重复的条目。如果您有字符串条目,您可以很容易地使用字符串方法找到要删除的所有索引。

ind_drop = df[df['column_of_strings'].apply(lambda x: x.startswith('Keyword'))].index

现在使用索引删除这些行

new_df = df.drop(ind_drop)

请看下面的数据框架df

df

   column1  column2  column3
0        1       11       21
1        2       12       22
2        3       13       23
3        4       14       24
4        5       15       25
5        6       16       26
6        7       17       27
7        8       18       28
8        9       19       29
9       10       20       30

删除第1列中所有奇数的行

创建一个列n1中所有元素的列表,并只保留那些偶数元素(您不想删除的元素)

Keep_elements = [x for x in df.]列1如果x%2==0]

所有列n1中值为[2,4,6,8,10]的行将被保留或不被删除。

df.set_index('column1',inplace = True)
df.drop(df.index.difference(keep_elements),axis=0,inplace=True)
df.reset_index(inplace=True)

我们将columnn1作为索引,并删除所有不需要的行。然后我们将索引重置回来。 df

   column1  column2  column3
0        2       12       22
1        4       14       24
2        6       16       26
3        8       18       28
4       10       20       30

要删除索引为1,2,4的行,您可以使用:

df[~df.index.isin([1, 2, 4])]

波浪符~对方法isin的结果求反。另一种选择是删除索引:

df.loc[df.index.drop([1, 2, 4])]

使用DataFrame。删除并传递一系列索引标签:

In [65]: df
Out[65]: 
       one  two
one      1    4
two      2    3
three    3    2
four     4    1
    
    
In [66]: df.drop(index=[1,3])
Out[66]: 
       one  two
one      1    4
three    3    2