下面的函数foo返回一个字符串'foo'。我如何才能获得从线程的目标返回的值'foo' ?

from threading import Thread

def foo(bar):
    print('hello {}'.format(bar))
    return 'foo'
    
thread = Thread(target=foo, args=('world!',))
thread.start()
return_value = thread.join()

上面所示的“一种明显的方法”不起作用:thread.join()返回None。


当前回答

这是一个很老的问题,但我想分享一个简单的解决方案,它对我的开发过程有帮助。

这个答案背后的方法论是这样一个事实,即“新的”目标函数,内部是将原始函数的结果(通过__init__函数传递)通过所谓的闭包分配给包装器的结果实例属性。

这允许包装器类保留返回值以供调用者随时访问。

注意:这个方法不需要使用线程的任何mangded方法或私有方法。线程类,虽然没有考虑屈服函数(OP没有提到屈服函数)。

享受吧!

from threading import Thread as _Thread


class ThreadWrapper:
    def __init__(self, target, *args, **kwargs):
        self.result = None
        self._target = self._build_threaded_fn(target)
        self.thread = _Thread(
            target=self._target,
            *args,
            **kwargs
        )

    def _build_threaded_fn(self, func):
        def inner(*args, **kwargs):
            self.result = func(*args, **kwargs)
        return inner

此外,你可以用下面的代码运行pytest(假设你已经安装了它)来演示结果:

import time
from commons import ThreadWrapper


def test():

    def target():
        time.sleep(1)
        return 'Hello'

    wrapper = ThreadWrapper(target=target)
    wrapper.thread.start()

    r = wrapper.result
    assert r is None

    time.sleep(2)

    r = wrapper.result
    assert r == 'Hello'

其他回答

使用队列:

import threading, queue

def calc_square(num, out_queue1):
  l = []
  for x in num:
    l.append(x*x)
  out_queue1.put(l)


arr = [1,2,3,4,5,6,7,8,9,10]
out_queue1=queue.Queue()
t1=threading.Thread(target=calc_square, args=(arr,out_queue1))
t1.start()
t1.join()
print (out_queue1.get())

我见过的一种方法是将一个可变对象(如列表或字典)传递给线程的构造函数,同时传递一个索引或其他某种类型的标识符。然后线程可以将结果存储在该对象的专用槽中。例如:

def foo(bar, result, index):
    print 'hello {0}'.format(bar)
    result[index] = "foo"

from threading import Thread

threads = [None] * 10
results = [None] * 10

for i in range(len(threads)):
    threads[i] = Thread(target=foo, args=('world!', results, i))
    threads[i].start()

# do some other stuff

for i in range(len(threads)):
    threads[i].join()

print " ".join(results)  # what sound does a metasyntactic locomotive make?

如果你真的想要join()返回被调用函数的返回值,你可以用Thread子类来实现,如下所示:

from threading import Thread

def foo(bar):
    print 'hello {0}'.format(bar)
    return "foo"

class ThreadWithReturnValue(Thread):
    def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs={}, Verbose=None):
        Thread.__init__(self, group, target, name, args, kwargs, Verbose)
        self._return = None
    def run(self):
        if self._Thread__target is not None:
            self._return = self._Thread__target(*self._Thread__args,
                                                **self._Thread__kwargs)
    def join(self):
        Thread.join(self)
        return self._return

twrv = ThreadWithReturnValue(target=foo, args=('world!',))

twrv.start()
print twrv.join()   # prints foo

这有点麻烦,因为一些名称混乱,它访问特定于线程实现的“私有”数据结构……但它确实有效。

对于Python 3:

class ThreadWithReturnValue(Thread):
    
    def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs={}, Verbose=None):
        Thread.__init__(self, group, target, name, args, kwargs)
        self._return = None

    def run(self):
        if self._target is not None:
            self._return = self._target(*self._args,
                                                **self._kwargs)
    def join(self, *args):
        Thread.join(self, *args)
        return self._return

一种常见的解决方案是用装饰器来包装函数foo

result = queue.Queue()

def task_wrapper(*args):
    result.put(target(*args))

那么整个代码可能是这样的

result = queue.Queue()

def task_wrapper(*args):
    result.put(target(*args))

threads = [threading.Thread(target=task_wrapper, args=args) for args in args_list]

for t in threads:
    t.start()
    while(True):
        if(len(threading.enumerate()) < max_num):
            break
for t in threads:
    t.join()
return result

Note

一个重要的问题是返回值可能是无序的。 (事实上,返回值不一定保存到队列中,因为您可以选择任意线程安全的数据结构)

我对这个问题的解决方案是将函数和线程包装在一个类中。不需要使用池、队列或c类型变量传递。它也是非阻塞的。而是检查状态。参见代码末尾如何使用它的示例。

import threading

class ThreadWorker():
    '''
    The basic idea is given a function create an object.
    The object can then run the function in a thread.
    It provides a wrapper to start it,check its status,and get data out the function.
    '''
    def __init__(self,func):
        self.thread = None
        self.data = None
        self.func = self.save_data(func)

    def save_data(self,func):
        '''modify function to save its returned data'''
        def new_func(*args, **kwargs):
            self.data=func(*args, **kwargs)

        return new_func

    def start(self,params):
        self.data = None
        if self.thread is not None:
            if self.thread.isAlive():
                return 'running' #could raise exception here

        #unless thread exists and is alive start or restart it
        self.thread = threading.Thread(target=self.func,args=params)
        self.thread.start()
        return 'started'

    def status(self):
        if self.thread is None:
            return 'not_started'
        else:
            if self.thread.isAlive():
                return 'running'
            else:
                return 'finished'

    def get_results(self):
        if self.thread is None:
            return 'not_started' #could return exception
        else:
            if self.thread.isAlive():
                return 'running'
            else:
                return self.data

def add(x,y):
    return x +y

add_worker = ThreadWorker(add)
print add_worker.start((1,2,))
print add_worker.status()
print add_worker.get_results()

如上所述,多处理池比基本线程要慢得多。使用一些回答中提出的队列是一种非常有效的替代方法。我已经将它与字典一起使用,以便能够运行许多小线程,并通过将它们与字典结合来恢复多个答案:

#!/usr/bin/env python3

import threading
# use Queue for python2
import queue
import random

LETTERS = 'abcdefghijklmnopqrstuvwxyz'
LETTERS = [ x for x in LETTERS ]

NUMBERS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

def randoms(k, q):
    result = dict()
    result['letter'] = random.choice(LETTERS)
    result['number'] = random.choice(NUMBERS)
    q.put({k: result})

threads = list()
q = queue.Queue()
results = dict()

for name in ('alpha', 'oscar', 'yankee',):
    threads.append( threading.Thread(target=randoms, args=(name, q)) )
    threads[-1].start()
_ = [ t.join() for t in threads ]
while not q.empty():
    results.update(q.get())

print(results)