我正在寻找一个NLP项目,在任何编程语言(尽管Python将是我的偏好)。

我想取两个文档并确定它们有多相似。


当前回答

与@larsman相同,但有一些预处理

import nltk, string
from sklearn.feature_extraction.text import TfidfVectorizer

nltk.download('punkt') # if necessary...


stemmer = nltk.stem.porter.PorterStemmer()
remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)

def stem_tokens(tokens):
    return [stemmer.stem(item) for item in tokens]

'''remove punctuation, lowercase, stem'''
def normalize(text):
    return stem_tokens(nltk.word_tokenize(text.lower().translate(remove_punctuation_map)))

vectorizer = TfidfVectorizer(tokenizer=normalize, stop_words='english')

def cosine_sim(text1, text2):
    tfidf = vectorizer.fit_transform([text1, text2])
    return ((tfidf * tfidf.T).A)[0,1]


print cosine_sim('a little bird', 'a little bird')
print cosine_sim('a little bird', 'a little bird chirps')
print cosine_sim('a little bird', 'a big dog barks')

其他回答

你可能想尝试一下cos文档相似度的在线服务http://www.scurtu.it/documentSimilarity.html

import urllib,urllib2
import json
API_URL="http://www.scurtu.it/apis/documentSimilarity"
inputDict={}
inputDict['doc1']='Document with some text'
inputDict['doc2']='Other document with some text'
params = urllib.urlencode(inputDict)    
f = urllib2.urlopen(API_URL, params)
response= f.read()
responseObject=json.loads(response)  
print responseObject

常见的方法是将文档转换为TF-IDF向量,然后计算它们之间的余弦相似度。任何关于信息检索(IR)的教科书都涵盖了这一点。参见《信息检索导论》,该书可在网上免费获得。

两两计算相似度

TF-IDF(以及类似的文本转换)在Python包Gensim和scikit-learn中实现。在后一个包中,计算余弦相似度非常简单

from sklearn.feature_extraction.text import TfidfVectorizer

documents = [open(f).read() for f in text_files]
tfidf = TfidfVectorizer().fit_transform(documents)
# no need to normalize, since Vectorizer will return normalized tf-idf
pairwise_similarity = tfidf * tfidf.T

或者,如果文档是普通字符串,

>>> corpus = ["I'd like an apple", 
...           "An apple a day keeps the doctor away", 
...           "Never compare an apple to an orange", 
...           "I prefer scikit-learn to Orange", 
...           "The scikit-learn docs are Orange and Blue"]                                                                                                                                                                                                   
>>> vect = TfidfVectorizer(min_df=1, stop_words="english")                                                                                                                                                                                                   
>>> tfidf = vect.fit_transform(corpus)                                                                                                                                                                                                                       
>>> pairwise_similarity = tfidf * tfidf.T 

尽管Gensim在这类任务中可能有更多选择。

再看看这个问题。

[免责声明:我参与了scikit-learn TF-IDF的实现。]

解读结果

从上面来看,pairwise_similarity是一个方形的Scipy稀疏矩阵,行数和列数等于语料库中文档的数量。

>>> pairwise_similarity                                                                                                                                                                                                                                      
<5x5 sparse matrix of type '<class 'numpy.float64'>'
    with 17 stored elements in Compressed Sparse Row format>

你可以通过.toarray()或.A将稀疏数组转换为NumPy数组:

>>> pairwise_similarity.toarray()                                                                                                                                                                                                                            
array([[1.        , 0.17668795, 0.27056873, 0.        , 0.        ],
       [0.17668795, 1.        , 0.15439436, 0.        , 0.        ],
       [0.27056873, 0.15439436, 1.        , 0.19635649, 0.16815247],
       [0.        , 0.        , 0.19635649, 1.        , 0.54499756],
       [0.        , 0.        , 0.16815247, 0.54499756, 1.        ]])

假设我们想要找到与最终文档最相似的文档,“the scikit-learn docs are Orange and Blue”。本文语料库索引为4。您可以通过取该行的argmax来找到最相似文档的索引,但首先需要屏蔽1,1表示每个文档与其自身的相似性。你可以通过np.fill_diagonal()来实现后者,通过np.nanargmax()来实现前者:

>>> import numpy as np     
                                                                                                                                                                                                                                  
>>> arr = pairwise_similarity.toarray()     
>>> np.fill_diagonal(arr, np.nan)                                                                                                                                                                                                                            
                                                                                                                                                                                                                 
>>> input_doc = "The scikit-learn docs are Orange and Blue"                                                                                                                                                                                                  
>>> input_idx = corpus.index(input_doc)                                                                                                                                                                                                                      
>>> input_idx                                                                                                                                                                                                                                                
4

>>> result_idx = np.nanargmax(arr[input_idx])                                                                                                                                                                                                                
>>> corpus[result_idx]                                                                                                                                                                                                                                       
'I prefer scikit-learn to Orange'

注意:使用稀疏矩阵的目的是为大型语料库和词汇表节省(大量空间)。你可以这样做,而不是转换为NumPy数组:

>>> n, _ = pairwise_similarity.shape                                                                                                                                                                                                                         
>>> pairwise_similarity[np.arange(n), np.arange(n)] = -1.0
>>> pairwise_similarity[input_idx].argmax()                                                                                                                                                                                                                  
3

I am combining the solutions from answers of @FredFoo and @Renaud. My solution is able to apply @Renaud's preprocessing on the text corpus of @FredFoo and then display pairwise similarities where the similarity is greater than 0. I ran this code on Windows by installing python and pip first. pip is installed as part of python but you may have to explicitly do it by re-running the installation package, choosing modify and then choosing pip. I use the command line to execute my python code saved in a file "similarity.py". I had to execute the following commands:

>set PYTHONPATH=%PYTHONPATH%;C:\_location_of_python_lib_
>python -m pip install sklearn
>python -m pip install nltk
>py similarity.py

similar .py的代码如下:

from sklearn.feature_extraction.text import TfidfVectorizer
import nltk, string
import numpy as np
nltk.download('punkt') # if necessary...

stemmer = nltk.stem.porter.PorterStemmer()
remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)

def stem_tokens(tokens):
    return [stemmer.stem(item) for item in tokens]

def normalize(text):
    return stem_tokens(nltk.word_tokenize(text.lower().translate(remove_punctuation_map)))

corpus = ["I'd like an apple", 
           "An apple a day keeps the doctor away", 
           "Never compare an apple to an orange", 
           "I prefer scikit-learn to Orange", 
           "The scikit-learn docs are Orange and Blue"]  

vect = TfidfVectorizer(tokenizer=normalize, stop_words='english')
tfidf = vect.fit_transform(corpus)   
                                                                                                                                                                                                                    
pairwise_similarity = tfidf * tfidf.T

#view the pairwise similarities 
print(pairwise_similarity)

#check how a string is normalized
print(normalize("The scikit-learn docs are Orange and Blue"))

这是一个老问题了,但我发现斯派西可以很容易地解决这个问题。读取文档后,可以使用简单的api相似性来查找文档向量之间的余弦相似性。

首先安装包并下载模型:

pip install spacy
python -m spacy download en_core_web_sm

然后用like so:

import spacy
nlp = spacy.load('en_core_web_sm')
doc1 = nlp(u'Hello hi there!')
doc2 = nlp(u'Hello hi there!')
doc3 = nlp(u'Hey whatsup?')

print (doc1.similarity(doc2)) # 0.999999954642
print (doc2.similarity(doc3)) # 0.699032527716
print (doc1.similarity(doc3)) # 0.699032527716

句法相似性 有3种简单的方法来检测相似性。

Word2Vec 手套 Tfidf或countvectorizer

语义相似性 可以使用BERT嵌入和尝试不同的词池策略来获得文档嵌入,然后在文档嵌入上应用余弦相似度。

一种先进的方法是利用BERT分数来获得相似度。

研究论文链接:https://arxiv.org/abs/1904.09675