我正在寻找一个NLP项目,在任何编程语言(尽管Python将是我的偏好)。

我想取两个文档并确定它们有多相似。


当前回答

常见的方法是将文档转换为TF-IDF向量,然后计算它们之间的余弦相似度。任何关于信息检索(IR)的教科书都涵盖了这一点。参见《信息检索导论》,该书可在网上免费获得。

两两计算相似度

TF-IDF(以及类似的文本转换)在Python包Gensim和scikit-learn中实现。在后一个包中,计算余弦相似度非常简单

from sklearn.feature_extraction.text import TfidfVectorizer

documents = [open(f).read() for f in text_files]
tfidf = TfidfVectorizer().fit_transform(documents)
# no need to normalize, since Vectorizer will return normalized tf-idf
pairwise_similarity = tfidf * tfidf.T

或者,如果文档是普通字符串,

>>> corpus = ["I'd like an apple", 
...           "An apple a day keeps the doctor away", 
...           "Never compare an apple to an orange", 
...           "I prefer scikit-learn to Orange", 
...           "The scikit-learn docs are Orange and Blue"]                                                                                                                                                                                                   
>>> vect = TfidfVectorizer(min_df=1, stop_words="english")                                                                                                                                                                                                   
>>> tfidf = vect.fit_transform(corpus)                                                                                                                                                                                                                       
>>> pairwise_similarity = tfidf * tfidf.T 

尽管Gensim在这类任务中可能有更多选择。

再看看这个问题。

[免责声明:我参与了scikit-learn TF-IDF的实现。]

解读结果

从上面来看,pairwise_similarity是一个方形的Scipy稀疏矩阵,行数和列数等于语料库中文档的数量。

>>> pairwise_similarity                                                                                                                                                                                                                                      
<5x5 sparse matrix of type '<class 'numpy.float64'>'
    with 17 stored elements in Compressed Sparse Row format>

你可以通过.toarray()或.A将稀疏数组转换为NumPy数组:

>>> pairwise_similarity.toarray()                                                                                                                                                                                                                            
array([[1.        , 0.17668795, 0.27056873, 0.        , 0.        ],
       [0.17668795, 1.        , 0.15439436, 0.        , 0.        ],
       [0.27056873, 0.15439436, 1.        , 0.19635649, 0.16815247],
       [0.        , 0.        , 0.19635649, 1.        , 0.54499756],
       [0.        , 0.        , 0.16815247, 0.54499756, 1.        ]])

假设我们想要找到与最终文档最相似的文档,“the scikit-learn docs are Orange and Blue”。本文语料库索引为4。您可以通过取该行的argmax来找到最相似文档的索引,但首先需要屏蔽1,1表示每个文档与其自身的相似性。你可以通过np.fill_diagonal()来实现后者,通过np.nanargmax()来实现前者:

>>> import numpy as np     
                                                                                                                                                                                                                                  
>>> arr = pairwise_similarity.toarray()     
>>> np.fill_diagonal(arr, np.nan)                                                                                                                                                                                                                            
                                                                                                                                                                                                                 
>>> input_doc = "The scikit-learn docs are Orange and Blue"                                                                                                                                                                                                  
>>> input_idx = corpus.index(input_doc)                                                                                                                                                                                                                      
>>> input_idx                                                                                                                                                                                                                                                
4

>>> result_idx = np.nanargmax(arr[input_idx])                                                                                                                                                                                                                
>>> corpus[result_idx]                                                                                                                                                                                                                                       
'I prefer scikit-learn to Orange'

注意:使用稀疏矩阵的目的是为大型语料库和词汇表节省(大量空间)。你可以这样做,而不是转换为NumPy数组:

>>> n, _ = pairwise_similarity.shape                                                                                                                                                                                                                         
>>> pairwise_similarity[np.arange(n), np.arange(n)] = -1.0
>>> pairwise_similarity[input_idx].argmax()                                                                                                                                                                                                                  
3

其他回答

这里有一个小应用程序让你开始…

import difflib as dl

a = file('file').read()
b = file('file1').read()

sim = dl.get_close_matches

s = 0
wa = a.split()
wb = b.split()

for i in wa:
    if sim(i, wb):
        s += 1

n = float(s) / float(len(wa))
print '%d%% similarity' % int(n * 100)

这里是Simphile NLP文本相似性Python包的创建者。Simphile包含几种文本相似度方法,它们与语言无关,并且比语言嵌入占用的cpu更少。

安装:

pip install simphile

选择你最喜欢的方法。这个例子显示了三点:

from simphile import jaccard_similarity, euclidian_similarity, compression_similarity

text_a = "I love dogs"
text_b = "I love cats"

print(f"Jaccard Similarity: {jaccard_similarity(text_a, text_b)}")
print(f"Euclidian Similarity: {euclidian_similarity(text_a, text_b)}")
print(f"Compression Similarity: {compression_similarity(text_a, text_b)}")

压缩相似性——利用压缩算法的模式识别 欧几里得相似性-把文本当作多维空间中的点,并计算它们的接近度 Jaccard Similairy -文字重叠越多,文本越相似

你可能想尝试一下cos文档相似度的在线服务http://www.scurtu.it/documentSimilarity.html

import urllib,urllib2
import json
API_URL="http://www.scurtu.it/apis/documentSimilarity"
inputDict={}
inputDict['doc1']='Document with some text'
inputDict['doc2']='Other document with some text'
params = urllib.urlencode(inputDict)    
f = urllib2.urlopen(API_URL, params)
response= f.read()
responseObject=json.loads(response)  
print responseObject

Generally a cosine similarity between two documents is used as a similarity measure of documents. In Java, you can use Lucene (if your collection is pretty large) or LingPipe to do this. The basic concept would be to count the terms in every document and calculate the dot product of the term vectors. The libraries do provide several improvements over this general approach, e.g. using inverse document frequencies and calculating tf-idf vectors. If you are looking to do something copmlex, LingPipe also provides methods to calculate LSA similarity between documents which gives better results than cosine similarity. For Python, you can use NLTK.

我们可以使用句子转换来完成这个任务 链接

下面是一个来自sbert的简单示例:

from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('all-MiniLM-L6-v2')
# Two lists of sentences
sentences1 = ['The cat sits outside']
sentences2 = ['The dog plays in the garden']
#Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
#Compute cosine-similarities
cosine_scores = util.cos_sim(embeddings1, embeddings2)
#Output the pairs with their score
for i in range(len(sentences1)):
   print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], 
         sentences2[i], cosine_scores[i][i]))