如何在Python中检查字符串是否表示数值?

def is_number(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

上述方法可行,但似乎很笨拙。


如果您正在测试的内容来自用户输入,那么即使它表示int或float,它仍然是一个字符串。请参阅如何将输入读取为数字?用于转换输入,并询问用户输入,直到他们给出有效响应以确保输入在继续之前表示int或float(或其他要求)。


当前回答

我知道这是一个特别古老的问题,但我想补充一个答案,我相信这个答案涵盖了投票最高的答案中缺少的信息,对任何发现这一点的人来说都非常有价值:

对于以下每个方法,如果需要接受任何输入,请将它们与计数连接。(假设我们使用的是整数的语音定义,而不是0-255等)

x.isdigit()用于检查x是否为整数。

x.replace('-','').idigit()用于检查x是否为负值。(值机柜台第一位)

x.replace('.','').idigit()用于检查x是否为小数。

x.replace(“:”,“”).idigit()用于检查x是否为比率。

x.replace('/','',1).idigit()用于检查x是否为分数。

其他回答

该答案提供了一步一步的指导,具有查找字符串的示例:

正整数正/负-整数/浮点如何在检查数字时丢弃“NaN”(不是数字)字符串?

检查字符串是否为正整数

您可以使用str.idigit()检查给定的字符串是否为正整数。

样本结果:

# For digit
>>> '1'.isdigit()
True
>>> '1'.isalpha()
False

检查字符串是否为正/负-整数/浮点

如果字符串是负数或浮点数,str.isdigit()返回False。例如:

# returns `False` for float
>>> '123.3'.isdigit()
False
# returns `False` for negative number
>>> '-123'.isdigit()
False

如果您还想检查负整数和浮点数,那么您可以编写一个自定义函数来检查它,如下所示:

def is_number(n):
    try:
        float(n)   # Type-casting the string to `float`.
                   # If string is not a valid `float`, 
                   # it'll raise `ValueError` exception
    except ValueError:
        return False
    return True

样品运行:

>>> is_number('123')    # positive integer number
True

>>> is_number('123.4')  # positive float number
True
 
>>> is_number('-123')   # negative integer number
True

>>> is_number('-123.4') # negative `float` number
True

>>> is_number('abc')    # `False` for "some random" string
False

检查数字时放弃“NaN”(非数字)字符串

上述函数将为“NAN”(非数字)字符串返回True,因为对于Python,它是表示它不是数字的有效浮点数。例如:

>>> is_number('NaN')
True

为了检查数字是否为“NaN”,可以使用math.isnan()作为:

>>> import math
>>> nan_num = float('nan')

>>> math.isnan(nan_num)
True

或者,如果您不想导入其他库来检查它,那么您可以通过使用==将其与自身进行比较来检查它。当nan float与自身比较时,Python返回False。例如:

# `nan_num` variable is taken from above example
>>> nan_num == nan_num
False

因此,上述函数is_number可以更新为“NaN”返回False,如下所示:

def is_number(n):
    is_number = True
    try:
        num = float(n)
        # check for "nan" floats
        is_number = num == num   # or use `math.isnan(num)`
    except ValueError:
        is_number = False
    return is_number

样品运行:

>>> is_number('Nan')   # not a number "Nan" string
False

>>> is_number('nan')   # not a number string "nan" with all lower cased
False

>>> is_number('123')   # positive integer
True

>>> is_number('-123')  # negative integer
True

>>> is_number('-1.12') # negative `float`
True

>>> is_number('abc')   # "some random" string
False

PS:根据号码类型,每次检查的每次操作都会产生额外的开销。选择符合您需求的is_number函数版本。

这不仅是丑陋和缓慢的,而且显得笨拙。

这可能需要一些时间来适应,但这是一种蟒蛇式的方式。正如已经指出的那样,替代方案更糟糕。但这样做还有一个好处:多态性。

duck类型背后的核心思想是“如果它像鸭子一样走路和说话,那么它就是鸭子。”如果您决定需要对字符串进行子类化,这样您就可以更改确定某个对象是否可以转换为float的方式,该怎么办?或者如果你决定完全测试其他对象呢?您可以在不必更改上述代码的情况下执行这些操作。

其他语言通过使用接口来解决这些问题。我将保存对哪个解决方案更适合另一个线程的分析。不过,重点是python显然是在公式中的鸭子类型方面,如果你打算用python进行大量编程,你可能必须习惯这样的语法(但这并不意味着你当然要喜欢它)。

还有一点您可能需要考虑:与许多其他语言相比,Python在抛出和捕获异常方面非常快(例如,比.Net快30倍)。见鬼,语言本身甚至抛出异常来传达非异常的正常程序条件(每次使用for循环时)。因此,在您注意到一个重大问题之前,我不会太担心这段代码的性能方面。

这不仅丑陋而且缓慢

我对这两个都有异议。

正则表达式或其他字符串解析方法会更丑陋、更慢。

我不确定有什么比上面提到的更快。它调用函数并返回。Try/Catch不会带来太多的开销,因为最常见的异常是在不大量搜索堆栈帧的情况下捕获的。

问题是任何数值转换函数都有两种结果

一个数字,如果该数字有效状态代码(例如,通过errno)或异常,表明无法解析任何有效数字。

C(作为一个例子)通过多种方式解决了这个问题。Python将其清晰明确地展示出来。

我认为你这样做的代码是完美的。

一个快速而简单的选项是检查数据类型:

def is_number(value):
    return type(value) in [int, float]

或者,如果要测试字符串的值是否为数字:

def isNumber (value):
    return True if type(value) in [int, float] else str(value).replace('.','',1).isdigit()

测验:

>>> isNumber(1)
True

>>> isNumber(1/3)
True

>>> isNumber(1.3)
True

>>> isNumber('1.3')
True

>>> isNumber('s1.3')
False

使用以下方法处理所有情况:-

import re
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '2.3') 
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '2.')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '.3')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '2.3sd')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '2.3')