很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。
你对一本1.25美元的书有什么期待?
不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。
当有质数个桶时,数字的分布真的更均匀吗?
或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?
很久以前,我花1.25美元在便宜货桌上买了一本数据结构的书。在这篇文章中,哈希函数的解释说,由于“数学的本质”,它最终应该被一个质数mod。
你对一本1.25美元的书有什么期待?
不管怎么说,我花了很多年思考数学的本质,但还是没弄明白。
当有质数个桶时,数字的分布真的更均匀吗?
或者这是一个老程序员的故事,每个人都接受,因为其他人都接受?
当前回答
假设表的大小(或模数)是T = (B*C)。如果你输入的散列是(N*A*B) N可以是任何整数,那么你的输出就不会很好地分布。因为每次n变成C、2C、3C等,你的输出就会开始重复。也就是说,你的输出只会分布在C位。注意这里的C是(T / HCF(表大小,哈希))。
这个问题可以通过制造hcf1来消除。质数是很好的选择。
另一个有趣的现象是当T = 2^N时。这些将给出与所有输入哈希的低N位完全相同的输出。由于每个数都可以表示为2的幂,当我们对任意数取T的模时,我们将减去所有2的幂形式的数,即>= N,因此总能得到特定模式的数,取决于输入。这也是一个糟糕的选择。
类似地,T作为10^N也是不好的,因为类似的原因(模式是十进制数而不是二进制数)。
因此,质数往往会给出更好的分布结果,因此是表大小的好选择。
其他回答
我读过一个流行的wordpress网站,上面有一些流行的答案。根据我的理解,我想分享一个简单的观察。
你可以在这篇文章中找到所有的细节,但假设以下是正确的:
使用质数给我们提供了一个唯一值的“最佳机会”
一个通用的hashmap实现需要有两个东西是唯一的。
键的唯一哈希码 用于存储实际值的唯一索引
我们如何得到唯一索引?通过使内部容器的初始大小也是质数。基本上,质数的存在是因为它具有产生唯一数字的独特特性,我们最终用它来标识对象并在内部容器中查找索引。
例子:
Key = " Key "
Value = " Value " uniqueId = "k" * 31 ^ 2 + "e" * 31 ^ 1 ' + “y”
映射到唯一id
现在我们想要一个独特的位置来存放我们的价值,所以我们
uniqueId % internalContainerSize == uniqueLocationForValue,假设internalContainerSize也是质数。
我知道这是简化的,但我希望你能理解我的大意。
这取决于哈希函数的选择。
许多哈希函数通过将数据中的各种元素与一些因子相乘,再乘以与机器的字大小相对应的2的幂的模(这个模可以通过让计算溢出来释放)来组合数据中的各种元素。
您不希望在数据元素的乘数和哈希表的大小之间有任何公共因子,因为这样可能会发生改变数据元素不会将数据分散到整个表上的情况。如果你为表的大小选择一个质数,这样的公因数是极不可能的。
另一方面,这些因数通常由奇数质数组成,因此在哈希表中使用2的幂也应该是安全的(例如,Eclipse在生成Java hashCode()方法时使用31)。
假设表的大小(或模数)是T = (B*C)。如果你输入的散列是(N*A*B) N可以是任何整数,那么你的输出就不会很好地分布。因为每次n变成C、2C、3C等,你的输出就会开始重复。也就是说,你的输出只会分布在C位。注意这里的C是(T / HCF(表大小,哈希))。
这个问题可以通过制造hcf1来消除。质数是很好的选择。
另一个有趣的现象是当T = 2^N时。这些将给出与所有输入哈希的低N位完全相同的输出。由于每个数都可以表示为2的幂,当我们对任意数取T的模时,我们将减去所有2的幂形式的数,即>= N,因此总能得到特定模式的数,取决于输入。这也是一个糟糕的选择。
类似地,T作为10^N也是不好的,因为类似的原因(模式是十进制数而不是二进制数)。
因此,质数往往会给出更好的分布结果,因此是表大小的好选择。
插入/从哈希表中检索时要做的第一件事是计算给定键的hashCode,然后通过执行hashCode % table_length将hashCode修剪为哈希表的大小来找到正确的bucket。这里有两个“陈述”,你很可能在某处读到过
如果对table_length使用2的幂,那么查找(hashCode(key) % 2^n)就像查找(hashCode(key) & (2^n -1))一样简单快捷。但是如果你为一个给定的键计算hashCode的函数不是很好,你肯定会在几个散列桶中聚集许多键。 但是,如果table_length使用质数,即使使用稍微愚蠢的hashCode函数,计算出来的hashCode也可以映射到不同的散列桶中。
这就是证明。
如果假设你的hashCode函数的结果是以下hashCode {x, 2x, 3x, 4x, 5x, 6x…},那么所有这些都将聚集在m个桶中,其中m = table_length/GreatestCommonFactor(table_length, x)。(验证/推导这个很简单)。现在可以执行以下操作之一来避免集群
确保你不会生成太多的hashCode,这些hashCode是另一个hashCode的倍数,比如{x, 2x, 3x, 4x, 5x, 6x…}。但如果你的hashTable应该有数百万个条目,这可能有点困难。 或者通过使GreatestCommonFactor(table_length, x)等于1使m等于table_length,即使table_length与x为coprime。如果x可以是任何数字,则确保table_length是质数。
来自- http://srinvis.blogspot.com/2006/07/hash-table-lengths-and-prime-numbers.html
Primes are used because you have good chances of obtaining a unique value for a typical hash-function which uses polynomials modulo P. Say, you use such hash-function for strings of length <= N, and you have a collision. That means that 2 different polynomials produce the same value modulo P. The difference of those polynomials is again a polynomial of the same degree N (or less). It has no more than N roots (this is here the nature of math shows itself, since this claim is only true for a polynomial over a field => prime number). So if N is much less than P, you are likely not to have a collision. After that, experiment can probably show that 37 is big enough to avoid collisions for a hash-table of strings which have length 5-10, and is small enough to use for calculations.