这可能是一个微不足道的问题,但我如何在python中并行化下面的循环?

# setup output lists
output1 = list()
output2 = list()
output3 = list()

for j in range(0, 10):
    # calc individual parameter value
    parameter = j * offset
    # call the calculation
    out1, out2, out3 = calc_stuff(parameter = parameter)

    # put results into correct output list
    output1.append(out1)
    output2.append(out2)
    output3.append(out3)

我知道如何在Python中启动单个线程,但我不知道如何“收集”结果。

多个进程也可以——在这种情况下,只要是最简单的就行。我目前使用的是Linux,但代码应该在Windows和Mac上运行。

并行化这段代码最简单的方法是什么?


当前回答

假设我们有一个async函数

async def work_async(self, student_name: str, code: str, loop):
"""
Some async function
"""
    # Do some async procesing    

这需要在一个大数组上运行。有些属性被传递给程序,有些则来自数组中字典元素的属性。

async def process_students(self, student_name: str, loop):
    market = sys.argv[2]
    subjects = [...] #Some large array
    batchsize = 5
    for i in range(0, len(subjects), batchsize):
        batch = subjects[i:i+batchsize]
        await asyncio.gather(*(self.work_async(student_name,
                                           sub['Code'],
                                           loop)
                       for sub in batch))

其他回答

由于全局解释器锁(GIL)的存在,在CPython上使用多线程并不能为纯python代码提供更好的性能。我建议使用multiprocessing模块:

pool = multiprocessing.Pool(4)
out1, out2, out3 = zip(*pool.map(calc_stuff, range(0, 10 * offset, offset)))

注意,这在交互式解释器中不起作用。

为了避免GIL周围常见的FUD:在本例中使用线程没有任何优势。这里要使用进程,而不是线程,因为它们避免了一大堆问题。

为什么不用线程和一个互斥来保护一个全局列表呢?

import os
import re
import time
import sys
import thread

from threading import Thread

class thread_it(Thread):
    def __init__ (self,param):
        Thread.__init__(self)
        self.param = param
    def run(self):
        mutex.acquire()
        output.append(calc_stuff(self.param))
        mutex.release()   


threads = []
output = []
mutex = thread.allocate_lock()

for j in range(0, 10):
    current = thread_it(j * offset)
    threads.append(current)
    current.start()

for t in threads:
    t.join()

#here you have output list filled with data

请记住,您的速度将与最慢的线程一样快

假设我们有一个async函数

async def work_async(self, student_name: str, code: str, loop):
"""
Some async function
"""
    # Do some async procesing    

这需要在一个大数组上运行。有些属性被传递给程序,有些则来自数组中字典元素的属性。

async def process_students(self, student_name: str, loop):
    market = sys.argv[2]
    subjects = [...] #Some large array
    batchsize = 5
    for i in range(0, len(subjects), batchsize):
        batch = subjects[i:i+batchsize]
        await asyncio.gather(*(self.work_async(student_name,
                                           sub['Code'],
                                           loop)
                       for sub in batch))

并行化这段代码最简单的方法是什么?

使用concurrent.futures中的PoolExecutor。将原始代码与此代码并排比较。首先,最简洁的方法是使用executor.map:

...
with ProcessPoolExecutor() as executor:
    for out1, out2, out3 in executor.map(calc_stuff, parameters):
        ...

或者通过单独提交每个电话来分解:

...
with ThreadPoolExecutor() as executor:
    futures = []
    for parameter in parameters:
        futures.append(executor.submit(calc_stuff, parameter))

    for future in futures:
        out1, out2, out3 = future.result() # this will block
        ...

离开上下文表示执行程序释放资源

您可以使用线程或进程,并使用完全相同的接口。

一个工作示例

下面是工作示例代码,将演示的价值:

把它放在一个文件futuretest.py中:

from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from time import time
from http.client import HTTPSConnection

def processor_intensive(arg):
    def fib(n): # recursive, processor intensive calculation (avoid n > 36)
        return fib(n-1) + fib(n-2) if n > 1 else n
    start = time()
    result = fib(arg)
    return time() - start, result

def io_bound(arg):
    start = time()
    con = HTTPSConnection(arg)
    con.request('GET', '/')
    result = con.getresponse().getcode()
    return time() - start, result

def manager(PoolExecutor, calc_stuff):
    if calc_stuff is io_bound:
        inputs = ('python.org', 'stackoverflow.com', 'stackexchange.com',
                  'noaa.gov', 'parler.com', 'aaronhall.dev')
    else:
        inputs = range(25, 32)
    timings, results = list(), list()
    start = time()
    with PoolExecutor() as executor:
        for timing, result in executor.map(calc_stuff, inputs):
            # put results into correct output list:
            timings.append(timing), results.append(result)
    finish = time()
    print(f'{calc_stuff.__name__}, {PoolExecutor.__name__}')
    print(f'wall time to execute: {finish-start}')
    print(f'total of timings for each call: {sum(timings)}')
    print(f'time saved by parallelizing: {sum(timings) - (finish-start)}')
    print(dict(zip(inputs, results)), end = '\n\n')

def main():
    for computation in (processor_intensive, io_bound):
        for pool_executor in (ProcessPoolExecutor, ThreadPoolExecutor):
            manager(pool_executor, calc_stuff=computation)

if __name__ == '__main__':
    main()

下面是python -m futuretest一次运行的输出:

processor_intensive, ProcessPoolExecutor
wall time to execute: 0.7326343059539795
total of timings for each call: 1.8033506870269775
time saved by parallelizing: 1.070716381072998
{25: 75025, 26: 121393, 27: 196418, 28: 317811, 29: 514229, 30: 832040, 31: 1346269}

processor_intensive, ThreadPoolExecutor
wall time to execute: 1.190223217010498
total of timings for each call: 3.3561410903930664
time saved by parallelizing: 2.1659178733825684
{25: 75025, 26: 121393, 27: 196418, 28: 317811, 29: 514229, 30: 832040, 31: 1346269}

io_bound, ProcessPoolExecutor
wall time to execute: 0.533886194229126
total of timings for each call: 1.2977914810180664
time saved by parallelizing: 0.7639052867889404
{'python.org': 301, 'stackoverflow.com': 200, 'stackexchange.com': 200, 'noaa.gov': 301, 'parler.com': 200, 'aaronhall.dev': 200}

io_bound, ThreadPoolExecutor
wall time to execute: 0.38941240310668945
total of timings for each call: 1.6049387454986572
time saved by parallelizing: 1.2155263423919678
{'python.org': 301, 'stackoverflow.com': 200, 'stackexchange.com': 200, 'noaa.gov': 301, 'parler.com': 200, 'aaronhall.dev': 200}

处理器密集型的分析

在Python中执行处理器密集型计算时,期望ProcessPoolExecutor比ThreadPoolExecutor性能更好。

由于全局解释器锁(又名GIL)的存在,线程不能使用多个处理器,因此每次计算的时间和壁时间(实际运行的时间)会更大。

IO-bound分析

另一方面,当执行IO绑定操作时,期望ThreadPoolExecutor比ProcessPoolExecutor性能更好。

Python的线程是真实的,OS,线程。操作系统可以让它们进入睡眠状态,并在信息到达时将它们重新唤醒。

最终的想法

我怀疑在Windows上多处理会更慢,因为Windows不支持分叉,所以每个新进程都要花时间启动。

您可以在多个进程中嵌套多个线程,但建议不要使用多个线程来派生多个进程。

如果在Python中面临一个繁重的处理问题,您可以简单地使用额外的进程来扩展—但不能使用线程。

这是最简单的方法!

你可以使用asyncio。(文档可以在这里找到)。它被用作多个Python异步框架的基础,这些框架提供了高性能的网络和web服务器、数据库连接库、分布式任务队列等。此外,它有高级和低级api来适应任何类型的问题。

import asyncio

def background(f):
    def wrapped(*args, **kwargs):
        return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)

    return wrapped

@background
def your_function(argument):
    #code

现在这个函数将在调用时并行运行,而不会将主程序置于等待状态。你也可以用它来并行for循环。当调用for循环时,虽然循环是顺序的,但每次迭代都是在解释器到达主程序时并行运行的。

1. 发射环平行于主线程没有任何等待

@background
def your_function(argument):
    time.sleep(5)
    print('function finished for '+str(argument))


for i in range(10):
    your_function(i)


print('loop finished')

这将产生以下输出:

loop finished
function finished for 4
function finished for 8
function finished for 0
function finished for 3
function finished for 6
function finished for 2
function finished for 5
function finished for 7
function finished for 9
function finished for 1

更新:2022年5月

虽然这回答了最初的问题,但有一些方法可以让我们按照被点赞的评论的要求等待循环完成。把它们也加在这里。实现的关键是:asyncio.gather() & run_until_complete()。考虑以下函数:

import asyncio
import time

def background(f):
    def wrapped(*args, **kwargs):
        return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs)

    return wrapped

@background
def your_function(argument, other_argument): # Added another argument
    time.sleep(5)
    print(f"function finished for {argument=} and {other_argument=}")

def code_to_run_before():
    print('This runs Before Loop!')

def code_to_run_after():
    print('This runs After Loop!')

2. 平行跑,但要等待结束

code_to_run_before()                                                         # Anything you want to run before, run here!

loop = asyncio.get_event_loop()                                              # Have a new event loop

looper = asyncio.gather(*[your_function(i, 1) for i in range(1, 5)])         # Run the loop
                               
results = loop.run_until_complete(looper)                                    # Wait until finish

code_to_run_after()                                                          # Anything you want to run after, run here!

这将产生以下输出:

This runs Before Loop!
function finished for argument=2 and other_argument=1
function finished for argument=3 and other_argument=1
function finished for argument=1 and other_argument=1
function finished for argument=4 and other_argument=1
This runs After Loop!

3.并行运行多个循环并等待完成

code_to_run_before()                                                         # Anything you want to run before, run here!   

loop = asyncio.get_event_loop()                                              # Have a new event loop

group1 = asyncio.gather(*[your_function(i, 1) for i in range(1, 2)])         # Run all the loops you want
group2 = asyncio.gather(*[your_function(i, 2) for i in range(3, 5)])         # Run all the loops you want
group3 = asyncio.gather(*[your_function(i, 3) for i in range(6, 9)])         # Run all the loops you want

all_groups = asyncio.gather(group1, group2, group3)                          # Gather them all                                    
results = loop.run_until_complete(all_groups)                                # Wait until finish

code_to_run_after()                                                          # Anything you want to run after, run here!

这将产生以下输出:

This runs Before Loop!
function finished for argument=3 and other_argument=2
function finished for argument=1 and other_argument=1
function finished for argument=6 and other_argument=3
function finished for argument=4 and other_argument=2
function finished for argument=7 and other_argument=3
function finished for argument=8 and other_argument=3
This runs After Loop!

4. 循环按顺序运行,但每个循环的迭代都是彼此并行运行的

code_to_run_before()                                                               # Anything you want to run before, run here!

for loop_number in range(3):

    loop = asyncio.get_event_loop()                                                # Have a new event loop

    looper = asyncio.gather(*[your_function(i, loop_number) for i in range(1, 5)]) # Run the loop
                             
    results = loop.run_until_complete(looper)                                      # Wait until finish

    print(f"finished for {loop_number=}")       

code_to_run_after()                                                                # Anything you want to run after, run here!

这将产生以下输出:

This runs Before Loop!
function finished for argument=3 and other_argument=0
function finished for argument=4 and other_argument=0
function finished for argument=1 and other_argument=0
function finished for argument=2 and other_argument=0
finished for loop_number=0
function finished for argument=4 and other_argument=1
function finished for argument=3 and other_argument=1
function finished for argument=2 and other_argument=1
function finished for argument=1 and other_argument=1
finished for loop_number=1
function finished for argument=1 and other_argument=2
function finished for argument=4 and other_argument=2
function finished for argument=3 and other_argument=2
function finished for argument=2 and other_argument=2
finished for loop_number=2
This runs After Loop!

更新:2022年6月

这在目前的形式可能无法运行在某些版本的jupyter笔记本电脑。原因是jupyter笔记本利用事件循环。要使它在这样的jupyter版本上工作,nest_asyncio(从名称可以看出,它将嵌套事件循环)是可行的方法。只需导入并应用它在单元格的顶部:

import nest_asyncio
nest_asyncio.apply()

上面讨论的所有功能在笔记本环境中也应该可以访问。