这可能是一个微不足道的问题,但我如何在python中并行化下面的循环?

# setup output lists
output1 = list()
output2 = list()
output3 = list()

for j in range(0, 10):
    # calc individual parameter value
    parameter = j * offset
    # call the calculation
    out1, out2, out3 = calc_stuff(parameter = parameter)

    # put results into correct output list
    output1.append(out1)
    output2.append(out2)
    output3.append(out3)

我知道如何在Python中启动单个线程,但我不知道如何“收集”结果。

多个进程也可以——在这种情况下,只要是最简单的就行。我目前使用的是Linux,但代码应该在Windows和Mac上运行。

并行化这段代码最简单的方法是什么?


当前回答

由于@iuryxavier

from multiprocessing import Pool
from multiprocessing import cpu_count


def add_1(x):
    return x + 1

if __name__ == "__main__":
    pool = Pool(cpu_count())
    results = pool.map(add_1, range(10**12))
    pool.close()  # 'TERM'
    pool.join()   # 'KILL'

其他回答

from joblib import Parallel, delayed
def process(i):
    return i * i
    
results = Parallel(n_jobs=2)(delayed(process)(i) for i in range(10))
print(results)  # prints [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

以上在我的机器上工作得很漂亮(Ubuntu,包joblib是预安装的,但可以通过pip install joblib安装)。

摘自https://blog.dominodatalab.com/simple-parallelization/


编辑于2021年3月31日:关于joblib, multiprocessing, threading和asyncio

joblib in the above code uses import multiprocessing under the hood (and thus multiple processes, which is typically the best way to run CPU work across cores - because of the GIL) You can let joblib use multiple threads instead of multiple processes, but this (or using import threading directly) is only beneficial if the threads spend considerable time on I/O (e.g. read/write to disk, send an HTTP request). For I/O work, the GIL does not block the execution of another thread Since Python 3.7, as an alternative to threading, you can parallelise work with asyncio, but the same advice applies like for import threading (though in contrast to latter, only 1 thread will be used; on the plus side, asyncio has a lot of nice features which are helpful for async programming) Using multiple processes incurs overhead. Think about it: Typically, each process needs to initialise/load everything you need to run your calculation. You need to check yourself if the above code snippet improves your wall time. Here is another one, for which I confirmed that joblib produces better results:

import time
from joblib import Parallel, delayed

def countdown(n):
    while n>0:
        n -= 1
    return n


t = time.time()
for _ in range(20):
    print(countdown(10**7), end=" ")
print(time.time() - t)  
# takes ~10.5 seconds on medium sized Macbook Pro


t = time.time()
results = Parallel(n_jobs=2)(delayed(countdown)(10**7) for _ in range(20))
print(results)
print(time.time() - t)
# takes ~6.3 seconds on medium sized Macbook Pro

tqdm库的并发包装器是并行化长时间运行代码的好方法。tqdm通过智能进度表提供当前进度和剩余时间的反馈,我发现这对于长时间计算非常有用。

通过对thread_map的简单调用,循环可以被重写为并发线程,或者通过对process_map的简单调用,循环可以被重写为并发多进程:

from tqdm.contrib.concurrent import thread_map, process_map


def calc_stuff(num, multiplier):
    import time

    time.sleep(1)

    return num, num * multiplier


if __name__ == "__main__":

    # let's parallelize this for loop:
    # results = [calc_stuff(i, 2) for i in range(64)]

    loop_idx = range(64)
    multiplier = [2] * len(loop_idx)

    # either with threading:
    results_threading = thread_map(calc_stuff, loop_idx, multiplier)

    # or with multi-processing:
    results_processes = process_map(calc_stuff, loop_idx, multiplier)

我发现joblib对我很有用。请看下面的例子:

from joblib import Parallel, delayed
def yourfunction(k):   
    s=3.14*k*k
    print "Area of a circle with a radius ", k, " is:", s

element_run = Parallel(n_jobs=-1)(delayed(yourfunction)(k) for k in range(1,10))

N_jobs =-1:使用所有可用内核

为什么不用线程和一个互斥来保护一个全局列表呢?

import os
import re
import time
import sys
import thread

from threading import Thread

class thread_it(Thread):
    def __init__ (self,param):
        Thread.__init__(self)
        self.param = param
    def run(self):
        mutex.acquire()
        output.append(calc_stuff(self.param))
        mutex.release()   


threads = []
output = []
mutex = thread.allocate_lock()

for j in range(0, 10):
    current = thread_it(j * offset)
    threads.append(current)
    current.start()

for t in threads:
    t.join()

#here you have output list filled with data

请记住,您的速度将与最慢的线程一样快

使用Ray有很多优点:

除了多个核(使用相同的代码)之外,还可以在多台机器上并行。 通过共享内存(和零拷贝序列化)有效地处理数值数据。 具有分布式调度的高任务吞吐量。 容错。

在本例中,您可以启动Ray并定义一个远程函数

import ray

ray.init()

@ray.remote(num_return_vals=3)
def calc_stuff(parameter=None):
    # Do something.
    return 1, 2, 3

然后并行地调用它

output1, output2, output3 = [], [], []

# Launch the tasks.
for j in range(10):
    id1, id2, id3 = calc_stuff.remote(parameter=j)
    output1.append(id1)
    output2.append(id2)
    output3.append(id3)

# Block until the results have finished and get the results.
output1 = ray.get(output1)
output2 = ray.get(output2)
output3 = ray.get(output3)

要在集群上运行相同的示例,唯一需要更改的行是对ray.init()的调用。相关文档可以在这里找到。

请注意,我正在帮助开发雷。