from joblib import Parallel, delayed
def process(i):
return i * i
results = Parallel(n_jobs=2)(delayed(process)(i) for i in range(10))
print(results) # prints [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
以上在我的机器上工作得很漂亮(Ubuntu,包joblib是预安装的,但可以通过pip install joblib安装)。
摘自https://blog.dominodatalab.com/simple-parallelization/
编辑于2021年3月31日:关于joblib, multiprocessing, threading和asyncio
joblib in the above code uses import multiprocessing under the hood (and thus multiple processes, which is typically the best way to run CPU work across cores - because of the GIL)
You can let joblib use multiple threads instead of multiple processes, but this (or using import threading directly) is only beneficial if the threads spend considerable time on I/O (e.g. read/write to disk, send an HTTP request). For I/O work, the GIL does not block the execution of another thread
Since Python 3.7, as an alternative to threading, you can parallelise work with asyncio, but the same advice applies like for import threading (though in contrast to latter, only 1 thread will be used; on the plus side, asyncio has a lot of nice features which are helpful for async programming)
Using multiple processes incurs overhead. Think about it: Typically, each process needs to initialise/load everything you need to run your calculation. You need to check yourself if the above code snippet improves your wall time. Here is another one, for which I confirmed that joblib produces better results:
import time
from joblib import Parallel, delayed
def countdown(n):
while n>0:
n -= 1
return n
t = time.time()
for _ in range(20):
print(countdown(10**7), end=" ")
print(time.time() - t)
# takes ~10.5 seconds on medium sized Macbook Pro
t = time.time()
results = Parallel(n_jobs=2)(delayed(countdown)(10**7) for _ in range(20))
print(results)
print(time.time() - t)
# takes ~6.3 seconds on medium sized Macbook Pro