如果我有一个具有以下列的数据框架:

1. NAME                                     object
2. On_Time                                      object
3. On_Budget                                    object
4. %actual_hr                                  float64
5. Baseline Start Date                  datetime64[ns]
6. Forecast Start Date                  datetime64[ns] 

我想能够说:对于这个数据框架,给我一个列的类型'对象'或类型'datetime'的列表?

我有一个函数,将数字('float64')转换为两个小数点后的位置,我想使用这个特定类型的数据帧列的列表,并通过这个函数将它们全部转换为2dp。

也许是这样的:

For c in col_list: if c.dtype = "Something"
list[]
List.append(c)?

当前回答

我使用infer_objects()

文档字符串:尝试为对象列推断更好的dtype。 尝试对对象类型的列进行软转换,保留非对象 不可转换列不变。推理规则是相同的 与正常的系列/数据框架构建过程一样。

.dtypes df.infer_objects ()

其他回答

你可以在dtypes属性上使用布尔掩码:

In [11]: df = pd.DataFrame([[1, 2.3456, 'c']])

In [12]: df.dtypes
Out[12]: 
0      int64
1    float64
2     object
dtype: object

In [13]: msk = df.dtypes == np.float64  # or object, etc.

In [14]: msk
Out[14]: 
0    False
1     True
2    False
dtype: bool

您可以只查看那些具有所需dtype的列:

In [15]: df.loc[:, msk]
Out[15]: 
        1
0  2.3456

现在你可以使用round(或其他)并将其赋值回去:

In [16]: np.round(df.loc[:, msk], 2)
Out[16]: 
      1
0  2.35

In [17]: df.loc[:, msk] = np.round(df.loc[:, msk], 2)

In [18]: df
Out[18]: 
   0     1  2
0  1  2.35  c

使用df.info(verbose=True),其中df是一个pandas datafarme,默认为verbose=False

如果6年后你仍然有这个问题,这应该可以解决它:)

cols = [c for c in df.columns if df[c].dtype in ['object', 'datetime64[ns]']]

yoshiserry;

def col_types(x,pd):
    dtypes=x.dtypes
    dtypes_col=dtypes.index
    dtypes_type=dtypes.value
    column_types=dict(zip(dtypes_col,dtypes_type))
    return column_types
df = pd.DataFrame({'float': [1.0],
                   'int': [1],
                   'bool_1': [False],
                   'datetime': [pd.Timestamp('20180310')],
                   'bool_2': [True],
                   'string': ['foo']})
df.dtypes

# float              float64
# int                  int64
# bool_1                bool
# datetime    datetime64[ns]
# bool_2                bool
# string              object
# dtype: object


[column for column, is_type in (df.dtypes==bool).items() if is_type]
# ['bool_1', 'bool_2']