在Python多处理库中,是否有支持多个参数的pool.map变体?

import multiprocessing

text = "test"

def harvester(text, case):
    X = case[0]
    text + str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    pool.map(harvester(text, case), case, 1)
    pool.close()
    pool.join()

当前回答

import time
from multiprocessing import Pool


def f1(args):
    vfirst, vsecond, vthird = args[0] , args[1] , args[2]
    print(f'First Param: {vfirst}, Second value: {vsecond} and finally third value is: {vthird}')
    pass


if __name__ == '__main__':
    p = Pool()
    result = p.map(f1, [['Dog','Cat','Mouse']])
    p.close()
    p.join()
    print(result)

其他回答

答案取决于版本和情况。最近版本的Python(从3.3开始)的最一般的答案首先由J.F.Sebastian在下面描述。1它使用Pool.starmap方法,接受一系列参数元组。然后,它会自动将每个元组中的参数解包,并将它们传递给给定的函数:

import multiprocessing
from itertools import product

def merge_names(a, b):
    return '{} & {}'.format(a, b)

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with multiprocessing.Pool(processes=3) as pool:
        results = pool.starmap(merge_names, product(names, repeat=2))
    print(results)

# Output: ['Brown & Brown', 'Brown & Wilson', 'Brown & Bartlett', ...

对于早期版本的Python,您需要编写一个助手函数来显式地解包参数。如果要与一起使用,还需要编写一个包装器,将Pool转换为上下文管理器。(感谢穆恩指出了这一点。)

import multiprocessing
from itertools import product
from contextlib import contextmanager

def merge_names(a, b):
    return '{} & {}'.format(a, b)

def merge_names_unpack(args):
    return merge_names(*args)

@contextmanager
def poolcontext(*args, **kwargs):
    pool = multiprocessing.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with poolcontext(processes=3) as pool:
        results = pool.map(merge_names_unpack, product(names, repeat=2))
    print(results)

# Output: ['Brown & Brown', 'Brown & Wilson', 'Brown & Bartlett', ...

在更简单的情况下,使用固定的第二个参数,也可以使用partial,但仅在Python 2.7+中使用。

import multiprocessing
from functools import partial
from contextlib import contextmanager

@contextmanager
def poolcontext(*args, **kwargs):
    pool = multiprocessing.Pool(*args, **kwargs)
    yield pool
    pool.terminate()

def merge_names(a, b):
    return '{} & {}'.format(a, b)

if __name__ == '__main__':
    names = ['Brown', 'Wilson', 'Bartlett', 'Rivera', 'Molloy', 'Opie']
    with poolcontext(processes=3) as pool:
        results = pool.map(partial(merge_names, b='Sons'), names)
    print(results)

# Output: ['Brown & Sons', 'Wilson & Sons', 'Bartlett & Sons', ...

1.这大部分都是由他的答案激发的,而他的答案很可能应该被接受。但由于这本书一直停留在顶端,似乎最好为未来读者改进它。

我认为以下内容会更好:

def multi_run_wrapper(args):
   return add(*args)

def add(x,y):
    return x+y

if __name__ == "__main__":
    from multiprocessing import Pool
    pool = Pool(4)
    results = pool.map(multi_run_wrapper,[(1,2),(2,3),(3,4)])
    print results

输出

[3, 5, 7]
import time
from multiprocessing import Pool


def f1(args):
    vfirst, vsecond, vthird = args[0] , args[1] , args[2]
    print(f'First Param: {vfirst}, Second value: {vsecond} and finally third value is: {vthird}')
    pass


if __name__ == '__main__':
    p = Pool()
    result = p.map(f1, [['Dog','Cat','Mouse']])
    p.close()
    p.join()
    print(result)

另一种方法是将列表列表传递给单参数例程:

import os
from multiprocessing import Pool

def task(args):
    print "PID =", os.getpid(), ", arg1 =", args[0], ", arg2 =", args[1]

pool = Pool()

pool.map(task, [
        [1,2],
        [3,4],
        [5,6],
        [7,8]
    ])

然后可以用自己喜欢的方法构造一个参数列表。

另一个简单的选择是将函数参数包装在元组中,然后包装应该在元组中传递的参数。在处理大量数据时,这可能并不理想。我相信它会为每个元组创建副本。

from multiprocessing import Pool

def f((a,b,c,d)):
    print a,b,c,d
    return a + b + c +d

if __name__ == '__main__':
    p = Pool(10)
    data = [(i+0,i+1,i+2,i+3) for i in xrange(10)]
    print(p.map(f, data))
    p.close()
    p.join()

以某种随机顺序给出输出:

0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8
7 8 9 10
6 7 8 9
8 9 10 11
9 10 11 12
[6, 10, 14, 18, 22, 26, 30, 34, 38, 42]