我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

这是 Python 3.5 或更大的表达式,将使用 Reduction 的字典组合:

>>> from functools import reduce
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(lambda x, y: {**x, **y}, l, {})
{'a': 100, 'b': 2, 'c': 3}

注意:即使字典列表是空的,或者只有一个元素。

在 Python 3.9 或更高版本中,Lambda 可以直接由 operator.ior 取代:

>>> from functools import reduce
>>> from operator import ior
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(ior, l, {})
{'a': 100, 'b': 2, 'c': 3}

在 Python 3.8 或更低的情况下,可以使用下列作为 ior 的替代品:

>>> from functools import reduce
>>> l = [{'a': 1}, {'b': 2}, {'a': 100, 'c': 3}]
>>> reduce(lambda x, y: x.update(y) or x, l, {})
{'a': 100, 'b': 2, 'c': 3}

其他回答

用一个细致的理解,你可以

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}

dc = {xi:(x[xi] if xi not in list(y.keys()) 
           else y[xi]) for xi in list(x.keys())+(list(y.keys()))}

给予

>>> dc
{'a': 1, 'c': 11, 'b': 10}

注意合成,如果不明白

{ (some_key if condition else default_key):(something_if_true if condition 
          else something_if_false) for key, value in dict_.items() }

最好的版本我可以想象,而不使用复制将是:

from itertools import chain
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
dict(chain(x.iteritems(), y.iteritems()))

它比 dict(x.items() + y.items()) 更快,但不像 n = copy(a); n.update(b),至少在 CPython 上。

我个人最喜欢这个版本,因为它在一个单一的功能合成中描述了我想要的东西相当好,唯一的小问题是,它并不完全显而易见,Y的值超过X的值,但我不认为很难找到它。

我将所提出的与 perfplot 比较,并发现

x | y   # Python 3.9+

是最快的解决方案,与旧的好解决方案

{**x, **y}

temp = x.copy()
temp.update(y)

此分類上一篇


重复字符的代码:

from collections import ChainMap
from itertools import chain
import perfplot


def setup(n):
    x = dict(zip(range(n), range(n)))
    y = dict(zip(range(n, 2 * n), range(n, 2 * n)))
    return x, y


def copy_update(x, y):
    temp = x.copy()
    temp.update(y)
    return temp


def add_items(x, y):
    return dict(list(x.items()) + list(y.items()))


def curly_star(x, y):
    return {**x, **y}


def chain_map(x, y):
    return dict(ChainMap({}, y, x))


def itertools_chain(x, y):
    return dict(chain(x.items(), y.items()))


def python39_concat(x, y):
    return x | y


b = perfplot.bench(
    setup=setup,
    kernels=[
        copy_update,
        add_items,
        curly_star,
        chain_map,
        itertools_chain,
        python39_concat,
    ],
    labels=[
        "copy_update",
        "dict(list(x.items()) + list(y.items()))",
        "{**x, **y}",
        "chain_map",
        "itertools.chain",
        "x | y",
    ],
    n_range=[2 ** k for k in range(18)],
    xlabel="len(x), len(y)",
    equality_check=None,
)
b.save("out.png")
b.show()

到目前为止,我对列出的解决方案的问题是,在合并词典中,关键“b”的值为10,但在我的思维方式上,它应该是12。

import timeit

n=100000
su = """
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
"""

def timeMerge(f,su,niter):
    print "{:4f} sec for: {:30s}".format(timeit.Timer(f,setup=su).timeit(n),f)

timeMerge("dict(x, **y)",su,n)
timeMerge("x.update(y)",su,n)
timeMerge("dict(x.items() + y.items())",su,n)
timeMerge("for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k] ",su,n)

#confirm for loop adds b entries together
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k]
print "confirm b elements are added:",x

结果:

0.049465 sec for: dict(x, **y)
0.033729 sec for: x.update(y)                   
0.150380 sec for: dict(x.items() + y.items())   
0.083120 sec for: for k in y.keys(): x[k] = k in x and x[k]+y[k] or y[k]

confirm b elements are added: {'a': 1, 'c': 11, 'b': 12}

此外,当您使用.items() (Python 3.0 之前),您正在创建一个新的列表,包含从字典中的项目. 如果您的字典是大,那么它是相当多的顶部(两个大列表将被扔掉,一旦合并的字典创建)。更新() 可以更有效地工作,因为它可以通过第二个字典项目为项目。

在时间方面:

>>> timeit.Timer("dict(x, **y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.52571702003479
>>> timeit.Timer("temp = x.copy()\ntemp.update(y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.694622993469238
>>> timeit.Timer("dict(x.items() + y.items())", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
41.484580039978027

此外,字典创建的关键词论点仅在Python 2.3中添加,而复制()和更新()将在较旧版本中工作。