良好的概述
一般来说,您要在快速读取时间(例如,嵌套集)或快速写入时间(邻接列表)之间做出决定。通常情况下,您最终会得到以下选项的组合,这些选项最适合您的需求。以下内容提供了一些深入阅读:
还有一个嵌套间隔与相邻列表的比较:我找到的相邻列表、实体化路径、嵌套集和嵌套间隔的最佳比较。分层数据模型:幻灯片,对权衡和示例用法进行了很好的解释在MySQL中表示层次结构:特别是Nested Set的非常好的概述RDBMS中的分层数据:我见过的一组最全面、组织最严密的链接,但在解释方面不多
选项
我知道的和一般特征:
相邻列表:
列:ID,ParentID易于实施。廉价节点移动、插入和删除。查找级别、祖先和后代、路径的费用高昂通过支持N+1的数据库中的公共表表达式避免N+1
嵌套集(也称为修改的预排序树遍历)
列:左侧、右侧廉价的祖先、后代由于易失性编码,非常昂贵的O(n/2)移动、插入和删除
桥接表(也称为闭合表/带触发器)
使用具有祖先、后代和深度的单独联接表(可选)廉价的祖先和后代插入、更新和删除的写入成本O(log n)(子树的大小)规范化编码:适用于连接中的RDBMS统计和查询计划器每个节点需要多行
血统列(也称为物质化路径、路径枚举)
列:世系(例如/父/子/孙/等)通过前缀查询的廉价后代(例如LEFT(沿袭,#)='/enumerated/path')插入、更新和删除的写入成本O(log n)(子树的大小)非关系型:依赖于Array数据类型或序列化字符串格式
嵌套间隔
与嵌套集类似,但具有实数/浮点/十进制,因此编码不易失(移动/插入/删除)存在实数/浮点/小数表示法/精度问题矩阵编码变体为“自由”添加了祖先编码(物化路径),但增加了线性代数的复杂性。
平面工作台
修改后的相邻列表,为每个记录添加一个级别和等级(例如排序)列。迭代/分页成本低昂贵的移动和删除好用:线程讨论-论坛/博客评论
多个沿袭列
列:每个沿袭级别一个,指的是根级别的所有父级,从项级别向下的级别设置为NULL廉价的祖先、后代、水平廉价插入、删除、移动树叶昂贵的插入、删除和移动内部节点对层次结构深度的硬性限制
数据库特定说明
MySQL数据库
使用相邻列表的会话变量
神谕
使用CONNECT BY遍历相邻列表
PostgreSQL
物化路径的ltree数据类型
SQL Server
概述2008提供了HierarchyId数据类型,它似乎有助于使用LineageColumn方法并扩展可以表示的深度。
相邻模型+嵌套集模型
我之所以选择它,是因为我可以很容易地将新项目插入到树中(您只需要分支的id就可以向树中插入新项目),并且可以很快地查询它。
+-------------+----------------------+--------+-----+-----+
| category_id | name | parent | lft | rgt |
+-------------+----------------------+--------+-----+-----+
| 1 | ELECTRONICS | NULL | 1 | 20 |
| 2 | TELEVISIONS | 1 | 2 | 9 |
| 3 | TUBE | 2 | 3 | 4 |
| 4 | LCD | 2 | 5 | 6 |
| 5 | PLASMA | 2 | 7 | 8 |
| 6 | PORTABLE ELECTRONICS | 1 | 10 | 19 |
| 7 | MP3 PLAYERS | 6 | 11 | 14 |
| 8 | FLASH | 7 | 12 | 13 |
| 9 | CD PLAYERS | 6 | 15 | 16 |
| 10 | 2 WAY RADIOS | 6 | 17 | 18 |
+-------------+----------------------+--------+-----+-----+
每次需要任何父级的所有子级时,只需查询父列。如果需要任何父项的所有后代,请查询其lft介于父项的lft和rgt之间的项。如果需要任何节点到树根的所有父节点,可以查询lft低于节点lft且rgt大于节点rgt的项,并按父节点排序。
我需要使访问和查询树的速度比插入更快,这就是为什么我选择这个
唯一的问题是在插入新项目时修复左右列。我为它创建了一个存储过程,并在每次插入新项目时调用它,这在我的情况下很少见,但它确实很快。我从Joe Celko的书中得到了这个想法,存储过程以及我是如何想到它的,这在DBA SE中进行了解释https://dba.stackexchange.com/q/89051/41481
我最喜欢的答案是这篇文章的第一句话所暗示的。使用“相邻列表”维护层次结构,并使用“嵌套集”查询层次结构。
到目前为止的问题是,从邻接列表到嵌套集的转换方法非常缓慢,因为大多数人使用称为“推堆栈”的极端RBAR方法进行转换,并且被认为是达到邻接列表维护简单和嵌套集性能卓越的涅盘所需的昂贵方法。因此,大多数人最终不得不满足于其中一个或另一个,尤其是如果节点数量超过,比如说,糟糕的100000个左右。使用push stack方法可能需要一整天的时间来完成MLM认为是一个小的百万节点层次结构的转换。
我想,我可以想出一种方法,以看似不可能的速度将相邻列表转换为嵌套集,从而给Celko带来一些竞争。下面是我的i5笔记本电脑上push堆栈方法的性能。
Duration for 1,000 Nodes = 00:00:00:870
Duration for 10,000 Nodes = 00:01:01:783 (70 times slower instead of just 10)
Duration for 100,000 Nodes = 00:49:59:730 (3,446 times slower instead of just 100)
Duration for 1,000,000 Nodes = 'Didn't even try this'
这里是新方法的持续时间(括号中有push堆栈方法)。
Duration for 1,000 Nodes = 00:00:00:053 (compared to 00:00:00:870)
Duration for 10,000 Nodes = 00:00:00:323 (compared to 00:01:01:783)
Duration for 100,000 Nodes = 00:00:03:867 (compared to 00:49:59:730)
Duration for 1,000,000 Nodes = 00:00:54:283 (compared to something like 2 days!!!)
是的,没错。在不到一分钟内转换了100万个节点,在4秒内转换了10万个节点。
您可以阅读新方法并从以下URL获取代码副本。http://www.sqlservercentral.com/articles/Hierarchy/94040/
我还使用类似的方法开发了一个“预聚合”层次结构。传销商和制作材料清单的人对这篇文章特别感兴趣。http://www.sqlservercentral.com/articles/T-SQL/94570/
如果你真的停下来看看这两篇文章,请跳到“加入讨论”链接,让我知道你的想法。
该设计尚未提及:
多个沿袭列
虽然它有局限性,但如果你能忍受的话,它非常简单和高效。特征:
列:每个沿袭级别一个,指的是根目录下的所有父级,低于当前项级别的级别设置为0(或NULL)层次结构的深度有固定的限制廉价的祖先、后代、水平廉价插入、删除、移动树叶昂贵的插入、删除和移动内部节点
下面是一个示例-鸟类的分类树,因此层次结构是类/目/科/属/种-种是最低级别,1行=1个分类单元(在叶节点的情况下对应于种):
CREATE TABLE `taxons` (
`TaxonId` smallint(6) NOT NULL default '0',
`ClassId` smallint(6) default NULL,
`OrderId` smallint(6) default NULL,
`FamilyId` smallint(6) default NULL,
`GenusId` smallint(6) default NULL,
`Name` varchar(150) NOT NULL default ''
);
以及数据示例:
+---------+---------+---------+----------+---------+-------------------------------+
| TaxonId | ClassId | OrderId | FamilyId | GenusId | Name |
+---------+---------+---------+----------+---------+-------------------------------+
| 254 | 0 | 0 | 0 | 0 | Aves |
| 255 | 254 | 0 | 0 | 0 | Gaviiformes |
| 256 | 254 | 255 | 0 | 0 | Gaviidae |
| 257 | 254 | 255 | 256 | 0 | Gavia |
| 258 | 254 | 255 | 256 | 257 | Gavia stellata |
| 259 | 254 | 255 | 256 | 257 | Gavia arctica |
| 260 | 254 | 255 | 256 | 257 | Gavia immer |
| 261 | 254 | 255 | 256 | 257 | Gavia adamsii |
| 262 | 254 | 0 | 0 | 0 | Podicipediformes |
| 263 | 254 | 262 | 0 | 0 | Podicipedidae |
| 264 | 254 | 262 | 263 | 0 | Tachybaptus |
这是很好的,因为这样您可以以非常简单的方式完成所有需要的操作,只要内部类别不改变其在树中的级别。
这真是一个方桩、圆洞的问题。
如果关系数据库和SQL是您拥有或愿意使用的唯一工具,那么到目前为止发布的答案就足够了。然而,为什么不使用一个用于处理分层数据的工具呢?图形数据库是复杂分层数据的理想选择。
与图形数据库解决方案可以轻松解决相同问题相比,关系模型的效率低下以及将图形/分层模型映射到关系模型上的任何代码/查询解决方案的复杂性都是不值得的。
将BOM表视为常见的分层数据结构。
class Component extends Vertex {
long assetId;
long partNumber;
long material;
long amount;
};
class PartOf extends Edge {
};
class AdjacentTo extends Edge {
};
两个子程序集之间的最短路径:简单的图遍历算法。可接受的路径可以根据标准进行限定。
相似性:两个组件之间的相似程度是多少?对两个子树执行遍历,计算两个子树的交集和并集。相似百分比是交集除以并集。
传递闭包:遍历子树并总结感兴趣的字段,例如“一个子组件中有多少铝?”
是的,您可以使用SQL和关系数据库来解决这个问题。然而,如果你愿意使用适合工作的工具,还有更好的方法。