我想逐行读取一个大文件(>5GB),而不将其全部内容加载到内存中。我不能使用readlines(),因为它在内存中创建了一个非常大的列表。
当前回答
这是我找到的最佳解决方案,我在330 MB的文件上尝试了一下。
lineno = 500
line_length = 8
with open('catfour.txt', 'r') as file:
file.seek(lineno * (line_length + 2))
print(file.readline(), end='')
其中line_length是单行中的字符数。例如,“abcd”的行长为4。
我添加了2个行长来跳过'\n'字符并移动到下一个字符。
其他回答
我意识到这个问题在很久以前就已经回答过了,但是这里有一种并行的方法,而不会杀死您的内存开销(如果您试图将每一行放入池中,就会出现这种情况)。显然,将readJSON_line2函数替换为一些合理的函数——这只是为了说明这一点!
加速将取决于文件大小和你对每一行所做的事情-但最坏的情况是,对于一个小文件,只是用JSON阅读器读取它,我看到下面设置的性能与ST相似。
希望对大家有用:
def readJSON_line2(linesIn):
#Function for reading a chunk of json lines
'''
Note, this function is nonsensical. A user would never use the approach suggested
for reading in a JSON file,
its role is to evaluate the MT approach for full line by line processing to both
increase speed and reduce memory overhead
'''
import json
linesRtn = []
for lineIn in linesIn:
if lineIn.strip() != 0:
lineRtn = json.loads(lineIn)
else:
lineRtn = ""
linesRtn.append(lineRtn)
return linesRtn
# -------------------------------------------------------------------
if __name__ == "__main__":
import multiprocessing as mp
path1 = "C:\\user\\Documents\\"
file1 = "someBigJson.json"
nBuffer = 20*nCPUs # How many chunks are queued up (so cpus aren't waiting on processes spawning)
nChunk = 1000 # How many lines are in each chunk
#Both of the above will require balancing speed against memory overhead
iJob = 0 #Tracker for SMP jobs submitted into pool
iiJob = 0 #Tracker for SMP jobs extracted back out of pool
jobs = [] #SMP job holder
MTres3 = [] #Final result holder
chunk = []
iBuffer = 0 # Buffer line count
with open(path1+file1) as f:
for line in f:
#Send to the chunk
if len(chunk) < nChunk:
chunk.append(line)
else:
#Chunk full
#Don't forget to add the current line to chunk
chunk.append(line)
#Then add the chunk to the buffer (submit to SMP pool)
jobs.append(pool.apply_async(readJSON_line2, args=(chunk,)))
iJob +=1
iBuffer +=1
#Clear the chunk for the next batch of entries
chunk = []
#Buffer is full, any more chunks submitted would cause undue memory overhead
#(Partially) empty the buffer
if iBuffer >= nBuffer:
temp1 = jobs[iiJob].get()
for rtnLine1 in temp1:
MTres3.append(rtnLine1)
iBuffer -=1
iiJob+=1
#Submit the last chunk if it exists (as it would not have been submitted to SMP buffer)
if chunk:
jobs.append(pool.apply_async(readJSON_line2, args=(chunk,)))
iJob +=1
iBuffer +=1
#And gather up the last of the buffer, including the final chunk
while iiJob < iJob:
temp1 = jobs[iiJob].get()
for rtnLine1 in temp1:
MTres3.append(rtnLine1)
iiJob+=1
#Cleanup
del chunk, jobs, temp1
pool.close()
如果你在文件中没有换行符,你可以这样做:
with open('large_text.txt') as f:
while True:
c = f.read(1024)
if not c:
break
print(c,end='')
blaze项目在过去6年里取得了长足的进展。它有一个简单的API,涵盖了pandas功能的一个有用子集。
dask。Dataframe内部负责分块,支持许多可并行操作,并允许您轻松地将切片导出回pandas,以便在内存中操作。
import dask.dataframe as dd
df = dd.read_csv('filename.csv')
df.head(10) # return first 10 rows
df.tail(10) # return last 10 rows
# iterate rows
for idx, row in df.iterrows():
...
# group by my_field and return mean
df.groupby(df.my_field).value.mean().compute()
# slice by column
df[df.my_field=='XYZ'].compute()
最好使用迭代器。 相关:fileinput -迭代多个输入流中的行。
从文档中可以看出:
import fileinput
for line in fileinput.input("filename", encoding="utf-8"):
process(line)
这将避免将整个文件一次复制到内存中。
老派方法:
fh = open(file_name, 'rt')
line = fh.readline()
while line:
# do stuff with line
line = fh.readline()
fh.close()
推荐文章
- 插入一行到熊猫数据框架
- 要列出Pandas DataFrame列
- 在Django模型中存储电话号码的最佳方法是什么?
- 从导入的模块中模拟函数
- 滚动或滑动窗口迭代器?
- python的方法找到最大值和它的索引在一个列表?
- 如何读取文件的前N行?
- 如何删除matplotlib中的顶部和右侧轴?
- 解析.py文件,读取AST,修改它,然后写回修改后的源代码
- Visual Studio Code:如何调试Python脚本的参数
- 使用元组/列表等等。从输入vs直接引用类型如list/tuple/etc
- 结合conda环境。Yml和PIP requirements.txt
- 将命名元组转换为字典
- 如何使x轴和y轴的刻度相等呢?
- Numpy在这里函数多个条件