我想逐行读取一个大文件(>5GB),而不将其全部内容加载到内存中。我不能使用readlines(),因为它在内存中创建了一个非常大的列表。
当前回答
在文件对象上使用for循环逐行读取。使用open(…)让上下文管理器确保文件读取后关闭:
with open("log.txt") as infile:
for line in infile:
print(line)
其他回答
老派方法:
fh = open(file_name, 'rt')
line = fh.readline()
while line:
# do stuff with line
line = fh.readline()
fh.close()
这个怎么样? 将文件划分为块,然后逐行读取,因为当您读取文件时,操作系统将缓存下一行。如果逐行读取文件,则不能有效利用缓存的信息。
相反,将文件划分为块,并将整个块加载到内存中,然后进行处理。
def chunks(file,size=1024):
while 1:
startat=fh.tell()
print startat #file's object current position from the start
fh.seek(size,1) #offset from current postion -->1
data=fh.readline()
yield startat,fh.tell()-startat #doesnt store whole list in memory
if not data:
break
if os.path.isfile(fname):
try:
fh=open(fname,'rb')
except IOError as e: #file --> permission denied
print "I/O error({0}): {1}".format(e.errno, e.strerror)
except Exception as e1: #handle other exceptions such as attribute errors
print "Unexpected error: {0}".format(e1)
for ele in chunks(fh):
fh.seek(ele[0])#startat
data=fh.read(ele[1])#endat
print data
blaze项目在过去6年里取得了长足的进展。它有一个简单的API,涵盖了pandas功能的一个有用子集。
dask。Dataframe内部负责分块,支持许多可并行操作,并允许您轻松地将切片导出回pandas,以便在内存中操作。
import dask.dataframe as dd
df = dd.read_csv('filename.csv')
df.head(10) # return first 10 rows
df.tail(10) # return last 10 rows
# iterate rows
for idx, row in df.iterrows():
...
# group by my_field and return mean
df.groupby(df.my_field).value.mean().compute()
# slice by column
df[df.my_field=='XYZ'].compute()
当您希望并行工作并只读取数据块,但要用新行保持数据整洁时,这可能很有用。
def readInChunks(fileObj, chunkSize=1024):
while True:
data = fileObj.read(chunkSize)
if not data:
break
while data[-1:] != '\n':
data+=fileObj.read(1)
yield data
在文件对象上使用for循环逐行读取。使用open(…)让上下文管理器确保文件读取后关闭:
with open("log.txt") as infile:
for line in infile:
print(line)
推荐文章
- SQLAlchemy是否有与Django的get_or_create等价的函数?
- 如何将python datetime转换为字符串,具有可读格式的日期?
- 美丽的汤和提取div及其内容的ID
- 在Python中重置生成器对象
- 用Python构建最小的插件架构
- model.eval()在pytorch中做什么?
- Tensorflow 2.0:模块“Tensorflow”没有属性“Session”
- 从环境文件中读入环境变量
- 在OSX 10.11中安装Scrapy时,“OSError: [Errno 1]操作不允许”(El Capitan)(系统完整性保护)
- 如何删除熊猫数据帧的最后一行数据
- 我如何在熊猫中找到数字列?
- 检查pandas数据框架索引中是否存在值
- 计算熊猫数量的最有效方法是什么?
- 如何在python中验证日期字符串格式?
- 用csv模块从csv文件中读取特定的列?