我通读了维基百科上关于存在类型的文章。我认为它们之所以被称为存在类型是因为存在操作符(∃)。但我不知道这有什么意义。有什么区别

T = ∃X { X a; int f(X); }

and

T = ∀x { X a; int f(X); }

?


当前回答

据我所知,这是一种描述接口/抽象类的数学方法。

对于T =∃X {X a;int f (X);}

对于c#,它可以转换为泛型抽象类型:

abstract class MyType<T>{
    private T a;

    public abstract int f(T x);
}

"存在主义"的意思是有某种类型服从这里定义的规则。

其他回答

这些都是很好的例子,但我选择稍微不同的答案。回想一下数学,∀x。P(x)表示"对于所有x,我可以证明P(x)"换句话说,它是一种函数,你给我一个x,我有一个方法来证明它。

In type theory, we are not talking about proofs, but of types. So in this space we mean "for any type X you give me, I will give you a specific type P". Now, since we don't give P much information about X besides the fact that it is a type, P can't do much with it, but there are some examples. P can create the type of "all pairs of the same type": P<X> = Pair<X, X> = (X, X). Or we can create the option type: P<X> = Option<X> = X | Nil, where Nil is the type of the null pointers. We can make a list out of it: List<X> = (X, List<X>) | Nil. Notice that the last one is recursive, values of List<X> are either pairs where the first element is an X and the second element is a List<X> or else it is a null pointer.

现在,在数学∃x。P(x)表示“我可以证明存在一个特定的x,使得P(x)为真”。这样的x可能有很多,但要证明它,一个就足够了。另一种思考方法是,必须存在一个非空的证据-证明对{(x, P(x))}集合。

转换为类型理论:家族中的类型∃X。P<X>为类型X,对应类型P<X>。注意,在我们把X给P之前,(所以我们知道关于X的一切,但对P知之甚少)现在正好相反。P<X>并没有承诺给出任何关于X的信息,只是说有一个,而且它确实是一个类型。

这有什么用呢?嗯,P可以是一种类型,它有办法暴露其内部类型x。一个例子是一个对象,它隐藏了其状态x的内部表示。虽然我们没有办法直接操作它,但我们可以通过戳P来观察它的效果。这种类型可以有很多实现,但无论选择哪一种,您都可以使用所有这些类型。

Research into abstract datatypes and information hiding brought existential types into programming languages. Making a datatype abstract hides info about that type, so a client of that type cannot abuse it. Say you've got a reference to an object... some languages allow you to cast that reference to a reference to bytes and do anything you want to that piece of memory. For purposes of guaranteeing behavior of a program, it's useful for a language to enforce that you only act on the reference to the object via the methods the designer of the object provides. You know the type exists, but nothing more.

看到的: 抽象类型有存在类型,MITCHEL和PLOTKIN http://theory.stanford.edu/~jcm/papers/mitch-plotkin-88.pdf

类型参数的所有值都存在一个通用类型。存在类型仅适用于满足存在类型约束的类型参数值。

例如,在Scala中,表示存在类型的一种方法是抽象类型,它被限制在某个上界或下界。

trait Existential {
  type Parameter <: Interface
}

同样,受约束的通用类型是存在类型,如下例所示。

trait Existential[Parameter <: Interface]

任何使用站点都可以使用接口,因为存在的任何可实例化子类型必须定义必须实现接口的类型Parameter。

在Scala中,存在类型的退化情况是一种抽象类型,它永远不会被引用,因此不需要由任何子类型定义。这在Scala中有效地简化了List[_]和List<?Java中的>。

我的回答受到Martin Odersky关于统一抽象类型和存在类型的建议的启发。随附的幻灯片有助于理解。

当有人定义一个通用类型∀X时,他们是在说:你可以插入任何你想要的类型,我不需要知道任何类型来完成我的工作,我只会不透明地将它称为X。

当有人定义存在类型∃X时,他们在说:我将在这里使用我想要的任何类型;你不会知道任何关于类型的信息,所以你只能模糊地把它称为X。

通用类型让你可以这样写:

void copy<T>(List<T> source, List<T> dest) {
   ...
}

复制函数不知道T是多少,但它不需要知道。

存在类型可以让你这样写:

interface VirtualMachine<B> {
   B compile(String source);
   void run(B bytecode);
}

// Now, if you had a list of VMs you wanted to run on the same input:
void runAllCompilers(List<∃B:VirtualMachine<B>> vms, String source) {
   for (∃B:VirtualMachine<B> vm : vms) {
      B bytecode = vm.compile(source);
      vm.run(bytecode);
   }
}

列表中的每个虚拟机实现都可以有不同的字节码类型。runAllCompilers函数不知道字节码类型是什么,但它不需要知道;它所做的就是将字节码从VirtualMachine.compile传递到VirtualMachine.run。

Java类型通配符(例如:List<?>)是存在类型的一种非常有限的形式。

更新:忘了说你可以用通用类型来模拟存在类型。首先,包装通用类型以隐藏类型参数。第二,反向控制(这有效地交换了上面定义中的“你”和“我”部分,这是存在和共相之间的主要区别)。

// A wrapper that hides the type parameter 'B'
interface VMWrapper {
   void unwrap(VMHandler handler);
}

// A callback (control inversion)
interface VMHandler {
   <B> void handle(VirtualMachine<B> vm);
}

现在,我们可以让VMWrapper调用我们自己的VMHandler,它有一个通用类型的句柄函数。最终效果是一样的,我们的代码必须将B视为不透明的。

void runWithAll(List<VMWrapper> vms, final String input)
{
   for (VMWrapper vm : vms) {
      vm.unwrap(new VMHandler() {
         public <B> void handle(VirtualMachine<B> vm) {
            B bytecode = vm.compile(input);
            vm.run(bytecode);
         }
      });
   }
}

虚拟机实现示例:

class MyVM implements VirtualMachine<byte[]>, VMWrapper {
   public byte[] compile(String input) {
      return null; // TODO: somehow compile the input
   }
   public void run(byte[] bytecode) {
      // TODO: Somehow evaluate 'bytecode'
   }
   public void unwrap(VMHandler handler) {
      handler.handle(this);
   }
}

据我所知,这是一种描述接口/抽象类的数学方法。

对于T =∃X {X a;int f (X);}

对于c#,它可以转换为泛型抽象类型:

abstract class MyType<T>{
    private T a;

    public abstract int f(T x);
}

"存在主义"的意思是有某种类型服从这里定义的规则。