我通读了维基百科上关于存在类型的文章。我认为它们之所以被称为存在类型是因为存在操作符(∃)。但我不知道这有什么意义。有什么区别

T = ∃X { X a; int f(X); }

and

T = ∀x { X a; int f(X); }

?


当前回答

据我所知,这是一种描述接口/抽象类的数学方法。

对于T =∃X {X a;int f (X);}

对于c#,它可以转换为泛型抽象类型:

abstract class MyType<T>{
    private T a;

    public abstract int f(T x);
}

"存在主义"的意思是有某种类型服从这里定义的规则。

其他回答

我画了这个图。我不知道它是否严谨。但如果有帮助的话,我很高兴。

存在类型是不透明类型。

想想Unix中的文件句柄。你知道它的类型是int,所以你可以很容易地伪造它。例如,您可以尝试从句柄43读取。如果恰好程序打开了一个带有这个特定句柄的文件,那么您将从中读取。你的代码不必是恶意的,只是草率的(例如,句柄可以是一个未初始化的变量)。

存在类型对程序隐藏。如果fopen返回一个存在类型,你所能做的就是将它与一些接受这种存在类型的库函数一起使用。例如,下面的伪代码可以编译:

let exfile = fopen("foo.txt"); // No type for exfile!
read(exfile, buf, size);

接口“read”声明为:

存在一种类型T,这样:

size_t read(T exfile, char* buf, size_t size);

变量exfile不是int,不是char*,也不是struct file——在类型系统中没有任何可以表示的东西。你不能声明一个未知类型的变量,你也不能强制转换,比如说,一个指针到那个未知类型。语言不允许你这么做。

据我所知,这是一种描述接口/抽象类的数学方法。

对于T =∃X {X a;int f (X);}

对于c#,它可以转换为泛型抽象类型:

abstract class MyType<T>{
    private T a;

    public abstract int f(T x);
}

"存在主义"的意思是有某种类型服从这里定义的规则。

我认为将存在类型与普遍类型一起解释是有意义的,因为这两个概念是互补的,即一个是另一个的“相反”。

我无法回答关于存在类型的每一个细节(比如给出一个确切的定义,列出所有可能的用法,它们与抽象数据类型的关系,等等),因为我在这方面的知识不够丰富。我将只演示(使用Java)这篇HaskellWiki文章所说的存在类型的主要效果:

存在类型可以用于几个不同的目的。但它们所做的是在右边“隐藏”一个类型变量。通常,任何出现在右边的类型变量也必须出现在左边[…]

示例设置:

下面的伪代码不是很有效的Java,尽管它很容易修复。事实上,这正是我在这个答案中要做的!

class Tree<α>
{
    α       value;
    Tree<α> left;
    Tree<α> right;
}

int height(Tree<α> t)
{
    return (t != null)  ?  1 + max( height(t.left), height(t.right) )
                        :  0;
}

让我简单地解释一下。我们正在定义……

递归类型Tree<α>,表示二叉树中的一个节点。每个节点存储一个α类型的值,并引用相同类型的可选左右子树。 一个函数高度,它返回从任何叶节点到根节点t的最远距离。

现在,让我们把上面关于高度的伪代码转换成正确的Java语法!(为了简洁起见,我将继续省略一些样板文件,例如面向对象和可访问性修饰符。)我将展示两种可能的解决方案。

1. 通用型解决方案:

最明显的解决方法是通过在其签名中引入类型参数α来简单地使height成为泛型:

<α> int height(Tree<α> t)
{
    return (t != null)  ?  1 + max( height(t.left), height(t.right) )
                        :  0;
}

这将允许您在该函数中声明变量并创建α类型的表达式(如果您愿意的话)。但是…

2. 存在型解:

如果你看一下我们的方法体,你会注意到我们实际上并没有访问或使用任何α类型的东西!没有那种类型的表达式,也没有那种类型声明的变量……那么,为什么我们要让身高通用呢?为什么我们不能简单地忘记α?事实证明,我们可以:

int height(Tree<?> t)
{
    return (t != null)  ?  1 + max( height(t.left), height(t.right) )
                        :  0;
}

正如我在回答的一开始所写的,存在型和普遍型在本质上是互补/双重的。因此,如果通用类型解决方案是使高度更加泛型,那么我们应该期望存在类型具有相反的效果:通过隐藏/删除类型参数α,使它不那么泛型。

因此,您不能再在此方法中引用t.value的类型,也不能操作该类型的任何表达式,因为没有标识符绑定到它。(?通配符是一个特殊的标记,而不是“捕获”类型的标识符。)也许你还能做的唯一一件事就是将它类型转换为Object。

简介:

===========================================================
                     |    universally       existentially
                     |  quantified type    quantified type
---------------------+-------------------------------------
 calling method      |                  
 needs to know       |        yes                no
 the type argument   |                 
---------------------+-------------------------------------
 called method       |                  
 can use / refer to  |        yes                no  
 the type argument   |                  
=====================+=====================================

似乎我来晚了一点,但无论如何,这篇文档增加了关于存在类型是什么的另一种观点,尽管不是特别的语言不可知,这样应该更容易理解存在类型:http://www.cs.uu.nl/groups/ST/Projects/ehc/ehc-book.pdf(第8章)

The difference between a universally and existentially quantified type can be characterized by the following observation: The use of a value with a ∀ quantified type determines the type to choose for the instantiation of the quantified type variable. For example, the caller of the identity function “id :: ∀a.a → a” determines the type to choose for the type variable a for this particular application of id. For the function application “id 3” this type equals Int. The creation of a value with a ∃ quantified type determines, and hides, the type of the quantified type variable. For example, a creator of a “∃a.(a, a → Int)” may have constructed a value of that type from “(3, λx → x)”; another creator has constructed a value with the same type from “(’x’, λx → ord x)”. From a users point of view both values have the same type and are thus interchangeable. The value has a specific type chosen for type variable a, but we do not know which type, so this information can no longer be exploited. This value specific type information has been ‘forgotten’; we only know it exists.