我有一个numpy_array。比如[a b c]。

然后我想将它与另一个NumPy数组连接起来(就像我们创建列表的列表一样)。如何创建包含NumPy数组的NumPy数组?

我试着做下面的事情,但没有任何运气

>>> M = np.array([])
>>> M
array([], dtype=float64)
>>> M.append(a,axis=0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'numpy.ndarray' object has no attribute 'append'
>>> a
array([1, 2, 3])

当前回答

试试下面的代码:

import numpy as np

a1 = np.array([])

n = int(input(""))

for i in range(0,n):
    a = int(input(""))
    a1 = np.append(a, a1)
    a = 0

print(a1)

你也可以用数组来代替a

其他回答

我在寻找一些略有不同的东西时发现了这个链接,如何开始将数组对象追加到空numpy数组,但尝试了本页上的所有解决方案都无济于事。

然后我发现了这个问题和答案:如何向空numpy数组添加新行

要点如下:

“开始”你想要的数组的方法是: Arr = np.empty((0,3), int)

然后你可以像这样使用concatenate来添加行:

Arr = np。Concatenate ((arr, [[x, y, z]]),轴=0)

参见https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html

你可以使用numpy.append()…

import numpy

B = numpy.array([3])
A = numpy.array([1, 2, 2])
B = numpy.append( B , A )

print B

> [3 1 2 2]

这将不会创建两个单独的数组,而是将两个数组追加到一个一维数组中。

根据堆栈的方向,有很多方法可以将数组堆叠在一起。 例如,你可以考虑np.stack() (doc)、np.vstack() (doc)和np.hstack() (doc)。

实际上,我们总是可以创建一个普通的numpy数组列表,然后进行转换。

In [1]: import numpy as np

In [2]: a = np.array([[1,2],[3,4]])

In [3]: b = np.array([[1,2],[3,4]])

In [4]: l = [a]

In [5]: l.append(b)

In [6]: l = np.array(l)

In [7]: l.shape
Out[7]: (2, 2, 2)

In [8]: l
Out[8]: 
array([[[1, 2],
        [3, 4]],

       [[1, 2],
        [3, 4]]])

Sven说这一切,只是非常谨慎,因为自动类型调整时,append被调用。

In [2]: import numpy as np

In [3]: a = np.array([1,2,3])

In [4]: b = np.array([1.,2.,3.])

In [5]: c = np.array(['a','b','c'])

In [6]: np.append(a,b)
Out[6]: array([ 1.,  2.,  3.,  1.,  2.,  3.])

In [7]: a.dtype
Out[7]: dtype('int64')

In [8]: np.append(a,c)
Out[8]: 
array(['1', '2', '3', 'a', 'b', 'c'], 
      dtype='|S1')

正如您所看到的,基于内容,dtype从int64到float32,然后到S1