我想取两个列表,并找出出现在这两个列表中的值。

a = [1, 2, 3, 4, 5]
b = [9, 8, 7, 6, 5]

returnMatches(a, b)

例如,将返回[5]。


当前回答

you can | for set union and & for set intersection.
for example:

    set1={1,2,3}
    set2={3,4,5}
    print(set1&set2)
    output=3

    set1={1,2,3}
    set2={3,4,5}
    print(set1|set2)
    output=1,2,3,4,5

curly braces in the answer.

其他回答

如果你想要一个布尔值:

>>> a = [1, 2, 3, 4, 5]
>>> b = [9, 8, 7, 6, 5]
>>> set(b) == set(a)  & set(b) and set(a) == set(a) & set(b)
False
>>> a = [3,1,2]
>>> b = [1,2,3]
>>> set(b) == set(a)  & set(b) and set(a) == set(a) & set(b)
True

另一种更实用的方法是检查列表1 (lst1)和列表2 (lst2)是否相等,其中对象的深度为1,并保持顺序:

all(i == j for i, j in zip(lst1, lst2))   

使用set.intersection(),它快速且可读。

>>> set(a).intersection(b)
set([5])

最简单的方法是使用set:

>>> a = [1, 2, 3, 4, 5]
>>> b = [9, 8, 7, 6, 5]
>>> set(a) & set(b)
set([5])

一个快速的性能测试显示卢茨的解决方案是最好的:

import time

def speed_test(func):
    def wrapper(*args, **kwargs):
        t1 = time.time()
        for x in xrange(5000):
            results = func(*args, **kwargs)
        t2 = time.time()
        print '%s took %0.3f ms' % (func.func_name, (t2-t1)*1000.0)
        return results
    return wrapper

@speed_test
def compare_bitwise(x, y):
    set_x = frozenset(x)
    set_y = frozenset(y)
    return set_x & set_y

@speed_test
def compare_listcomp(x, y):
    return [i for i, j in zip(x, y) if i == j]

@speed_test
def compare_intersect(x, y):
    return frozenset(x).intersection(y)

# Comparing short lists
a = [1, 2, 3, 4, 5]
b = [9, 8, 7, 6, 5]
compare_bitwise(a, b)
compare_listcomp(a, b)
compare_intersect(a, b)

# Comparing longer lists
import random
a = random.sample(xrange(100000), 10000)
b = random.sample(xrange(100000), 10000)
compare_bitwise(a, b)
compare_listcomp(a, b)
compare_intersect(a, b)

这是我的机器上的结果:

# Short list:
compare_bitwise took 10.145 ms
compare_listcomp took 11.157 ms
compare_intersect took 7.461 ms

# Long list:
compare_bitwise took 11203.709 ms
compare_listcomp took 17361.736 ms
compare_intersect took 6833.768 ms

显然,任何人工性能测试都应该持保留态度,但由于set().intersection()答案至少与其他解决方案一样快,而且也是最易读的,因此它应该是这个常见问题的标准解决方案。