我知道递归有时比循环要简洁得多,我不是在问什么时候应该用递归而不是迭代,我知道已经有很多关于这个的问题了。
我问的是,递归比循环快吗?在我看来,你总是能够细化一个循环,让它比递归函数执行得更快,因为循环是不存在的,不断地建立新的堆栈帧。
我特别在寻找在递归是正确处理数据的方法的应用程序中递归是否更快,例如在一些排序函数中,在二叉树中等等。
我知道递归有时比循环要简洁得多,我不是在问什么时候应该用递归而不是迭代,我知道已经有很多关于这个的问题了。
我问的是,递归比循环快吗?在我看来,你总是能够细化一个循环,让它比递归函数执行得更快,因为循环是不存在的,不断地建立新的堆栈帧。
我特别在寻找在递归是正确处理数据的方法的应用程序中递归是否更快,例如在一些排序函数中,在二叉树中等等。
当前回答
这里大部分答案都是错误的。正确答案是视情况而定。例如,这里有两个遍历树的C函数。首先是递归的:
static
void mm_scan_black(mm_rc *m, ptr p) {
SET_COL(p, COL_BLACK);
P_FOR_EACH_CHILD(p, {
INC_RC(p_child);
if (GET_COL(p_child) != COL_BLACK) {
mm_scan_black(m, p_child);
}
});
}
下面是使用迭代实现的相同函数:
static
void mm_scan_black(mm_rc *m, ptr p) {
stack *st = m->black_stack;
SET_COL(p, COL_BLACK);
st_push(st, p);
while (st->used != 0) {
p = st_pop(st);
P_FOR_EACH_CHILD(p, {
INC_RC(p_child);
if (GET_COL(p_child) != COL_BLACK) {
SET_COL(p_child, COL_BLACK);
st_push(st, p_child);
}
});
}
}
理解代码的细节并不重要。p是节点,P_FOR_EACH_CHILD执行遍历。在迭代版本中,我们需要一个显式的堆栈st,其中节点被推入,然后弹出和操作。
递归函数比迭代函数运行得快得多。原因是在后者中,对于每一项,都需要调用函数st_push,然后调用函数st_pop。
在前者中,每个节点只有递归的CALL。
另外,访问调用堆栈上的变量非常快。这意味着您正在从内存中读取,而内存可能总是在最里面的缓存中。另一方面,显式堆栈必须由来自堆的malloc:ed内存支持,而这要慢得多。
通过仔细的优化,例如内联st_push和st_pop,我可以大致达到与递归方法相同的效果。但至少在我的计算机上,访问堆内存的开销要大于递归调用的开销。
但是这个讨论基本上是没有意义的,因为递归树遍历是不正确的。如果你有一个足够大的树,你会用完调用堆栈空间,这就是为什么必须使用迭代算法。
其他回答
递归在显式管理堆栈的情况下可能更快,就像你提到的排序或二叉树算法一样。
我曾经遇到过这样的情况,用Java重写递归算法会让它变慢。
因此,正确的方法是首先以最自然的方式编写它,只在分析显示它至关重要时进行优化,然后衡量假定的改进。
这取决于使用的语言。你写了'language-agnostic',所以我会举一些例子。
在Java、C和Python中,与迭代相比,递归是相当昂贵的(通常),因为它需要分配一个新的堆栈框架。在一些C编译器中,可以使用编译器标志来消除这种开销,它将某些类型的递归(实际上是某些类型的尾部调用)转换为跳转而不是函数调用。
In functional programming language implementations, sometimes, iteration can be very expensive and recursion can be very cheap. In many, recursion is transformed into a simple jump, but changing the loop variable (which is mutable) sometimes requires some relatively heavy operations, especially on implementations which support multiple threads of execution. Mutation is expensive in some of these environments because of the interaction between the mutator and the garbage collector, if both might be running at the same time.
我知道在某些Scheme实现中,递归通常比循环快。
简而言之,答案取决于代码和实现。你喜欢什么风格就用什么风格。如果使用函数式语言,递归可能更快。如果使用命令式语言,迭代可能更快。在某些环境中,这两种方法将生成相同的程序集(将其放入管道中并吸食)。
Addendum: In some environments, the best alternative is neither recursion nor iteration but instead higher order functions. These include "map", "filter", and "reduce" (which is also called "fold"). Not only are these the preferred style, not only are they often cleaner, but in some environments these functions are the first (or only) to get a boost from automatic parallelization — so they can be significantly faster than either iteration or recursion. Data Parallel Haskell is an example of such an environment.
列表推导式是另一种选择,但它们通常只是用于迭代、递归或更高阶函数的语法糖。
这里大部分答案都是错误的。正确答案是视情况而定。例如,这里有两个遍历树的C函数。首先是递归的:
static
void mm_scan_black(mm_rc *m, ptr p) {
SET_COL(p, COL_BLACK);
P_FOR_EACH_CHILD(p, {
INC_RC(p_child);
if (GET_COL(p_child) != COL_BLACK) {
mm_scan_black(m, p_child);
}
});
}
下面是使用迭代实现的相同函数:
static
void mm_scan_black(mm_rc *m, ptr p) {
stack *st = m->black_stack;
SET_COL(p, COL_BLACK);
st_push(st, p);
while (st->used != 0) {
p = st_pop(st);
P_FOR_EACH_CHILD(p, {
INC_RC(p_child);
if (GET_COL(p_child) != COL_BLACK) {
SET_COL(p_child, COL_BLACK);
st_push(st, p_child);
}
});
}
}
理解代码的细节并不重要。p是节点,P_FOR_EACH_CHILD执行遍历。在迭代版本中,我们需要一个显式的堆栈st,其中节点被推入,然后弹出和操作。
递归函数比迭代函数运行得快得多。原因是在后者中,对于每一项,都需要调用函数st_push,然后调用函数st_pop。
在前者中,每个节点只有递归的CALL。
另外,访问调用堆栈上的变量非常快。这意味着您正在从内存中读取,而内存可能总是在最里面的缓存中。另一方面,显式堆栈必须由来自堆的malloc:ed内存支持,而这要慢得多。
通过仔细的优化,例如内联st_push和st_pop,我可以大致达到与递归方法相同的效果。但至少在我的计算机上,访问堆内存的开销要大于递归调用的开销。
但是这个讨论基本上是没有意义的,因为递归树遍历是不正确的。如果你有一个足够大的树,你会用完调用堆栈空间,这就是为什么必须使用迭代算法。
考虑每个迭代和递归都必须做什么。
迭代:跳转到循环的开始 递归:跳转到被调用函数的开头
你看,这里没有多少分歧的余地。
(我假设递归是尾部调用,编译器知道这种优化)。
Most answers here forget the obvious culprit why recursion is often slower than iterative solutions. It's linked with the build up and tear down of stack frames but is not exactly that. It's generally a big difference in the storage of the auto variable for each recursion. In an iterative algorithm with a loop, the variables are often held in registers and even if they spill, they will reside in the Level 1 cache. In a recursive algorithm, all intermediary states of the variable are stored on the stack, meaning they will generate many more spills to memory. This means that even if it makes the same amount of operations, it will have a lot memory accesses in the hot loop and what makes it worse, these memory operations have a lousy reuse rate making the caches less effective.
递归算法的缓存行为通常比迭代算法差。