是否有一个库函数,对列表/元组执行二进制搜索,并返回项目的位置,如果找到,如果没有'False' (-1, None等)?

我在bisect模块中找到了bisect_left/right函数,但即使项目不在列表中,它们仍然返回一个位置。这对于它们的预期用途来说是非常好的,但我只是想知道一个项目是否在列表中(不想插入任何东西)。

我想使用bisect_left,然后检查该位置的项是否等于我正在搜索的内容,但这似乎很麻烦(而且我还需要做边界检查,如果数字可以大于我的列表中最大的数字)。如果有更好的方法,我想知道。

为了澄清我需要这个:我知道字典将非常适合这个,但我试图保持尽可能低的内存消耗。我的预期用途是一种双向查找表。我在表中有一个值列表,我需要能够访问基于其索引的值。我还希望能够找到特定值的索引,如果值不在列表中,则为None。

使用字典是最快的方法,但(大约)会增加一倍的内存需求。

我问这个问题时认为我可能忽略了Python库中的一些东西。看来我得自己写代码了,就像Moe建议的那样。


当前回答

我同意@DaveAbrahams使用等分模块的答案是正确的方法。他在回答中没有提到一个重要的细节。

从文档中平分。Bisect_left (a, x, lo=0, hi=len(a))

平分模块不需要预先计算搜索数组。你可以把端点表示为等分线。Bisect_left,而不是使用默认值0和len(a)。

对我的使用更重要的是,寻找一个值X,使给定函数的误差最小化。要做到这一点,我需要一种方法让bisect_left的算法调用我的计算。这真的很简单。

只需要提供一个对象,将__getitem__定义为

例如,我们可以使用平分算法以任意精度找到一个平方根!

import bisect

class sqrt_array(object):
    def __init__(self, digits):
        self.precision = float(10**(digits))
    def __getitem__(self, key):
        return (key/self.precision)**2.0

sa = sqrt_array(4)

# "search" in the range of 0 to 10 with a "precision" of 0.0001
index = bisect.bisect_left(sa, 7, 0, 10*10**4)
print 7**0.5
print index/(10**4.0)

其他回答

这段代码以递归的方式处理整数列表。寻找最简单的情况,即:列表长度小于2。这意味着答案已经存在,并执行测试以检查正确答案。 如果不正确,则设置中间值并测试其是否正确,如果不正确,则再次调用该函数,但将中间值设置为上限或下限,将其向左或向右移动

def binary_search(intList, intValue, lowValue, highValue):
    if(highValue - lowValue) < 2:
        return intList[lowValue] == intValue or intList[highValue] == intValue
    middleValue = lowValue + ((highValue - lowValue)/2)
    if intList[middleValue] == intValue:
        return True
    if intList[middleValue] > intValue:
        return binary_search(intList, intValue, lowValue, middleValue - 1)
   return binary_search(intList, intValue, middleValue + 1, highValue)

在维基百科http://en.wikipedia.org/wiki/Binary_search_algorithm上查看例子

def binary_search(a, key, imin=0, imax=None):
    if imax is None:
        # if max amount not set, get the total
        imax = len(a) - 1

    while imin <= imax:
        # calculate the midpoint
        mid = (imin + imax)//2
        midval = a[mid]

        # determine which subarray to search
        if midval < key:
            # change min index to search upper subarray
            imin = mid + 1
        elif midval > key:
            # change max index to search lower subarray
            imax = mid - 1
        else:
            # return index number 
            return mid
    raise ValueError

这有点跑题了(因为Moe的回答似乎完整地回答了OP的问题),但从头到尾考虑整个过程的复杂性可能是值得的。如果你把东西存储在一个排序的列表中(这是二进制搜索会有帮助的地方),然后只是检查是否存在,你会遇到(最坏情况,除非指定):

排序的列表

O(n log n)来初始创建列表(如果它是未排序的数据。O(n),如果是排序的) O(log n)次查找(这是二分查找部分) O(n)插入/删除(可能是O(1)或O(log n)平均情况,这取决于您的模式)

而使用set()则会导致

O(n)来创造 O(1)查找 O(1)插入/删除

一个排序列表真正让你得到的是“下一个”,“前一个”和“范围”(包括插入或删除范围),它们是O(1)或O(|范围|),给定一个起始索引。如果你不经常使用这些类型的操作,那么存储为集合,排序显示可能是一个更好的整体交易。Set()在python中只会引起很少的额外开销。

如果你只是想看看它是否存在,试着把这个列表变成一个词典:

# Generate a list
l = [n*n for n in range(1000)]

# Convert to dict - doesn't matter what you map values to
d = dict((x, 1) for x in l)

count = 0
for n in range(1000000):
    # Compare with "if n in l"
    if n in d:
        count += 1

在我的机器上,“if n in l”需要37秒,而“if n in d”需要0.4秒。

我需要二进制搜索python和通用的Django模型。在Django模型中,一个模型可以有外键到另一个模型,我想在检索到的模型对象上执行一些搜索。我写了下面的函数,你可以用这个。

def binary_search(values, key, lo=0, hi=None, length=None, cmp=None):
    """
    This is a binary search function which search for given key in values.
    This is very generic since values and key can be of different type.
    If they are of different type then caller must specify `cmp` function to
    perform a comparison between key and values' item.
    :param values:  List of items in which key has to be search
    :param key: search key
    :param lo: start index to begin search
    :param hi: end index where search will be performed
    :param length: length of values
    :param cmp: a comparator function which can be used to compare key and values
    :return: -1 if key is not found else index
    """
    assert type(values[0]) == type(key) or cmp, "can't be compared"
    assert not (hi and length), "`hi`, `length` both can't be specified at the same time"

    lo = lo
    if not lo:
        lo = 0
    if hi:
        hi = hi
    elif length:
        hi = length - 1
    else:
        hi = len(values) - 1

    while lo <= hi:
        mid = lo + (hi - lo) // 2
        if not cmp:
            if values[mid] == key:
                return mid
            if values[mid] < key:
                lo = mid + 1
            else:
                hi = mid - 1
        else:
            val = cmp(values[mid], key)
            # 0 -> a == b
            # > 0 -> a > b
            # < 0 -> a < b
            if val == 0:
                return mid
            if val < 0:
                lo = mid + 1
            else:
                hi = mid - 1
    return -1