我使用熊猫作为数据库替代品,因为我有多个数据库(Oracle, SQL Server等),我无法使一个SQL等量命令序列。

我有一个表加载在一个DataFrame与一些列:

YEARMONTH, CLIENTCODE, SIZE, etc., etc.

在SQL中,计算每年不同客户端的数量将是:

SELECT count(distinct CLIENTCODE) FROM table GROUP BY YEARMONTH;

结果就是

201301    5000
201302    13245

我如何在熊猫中做到这一点?


当前回答

使用新的Pandas版本,可以很容易地获得数据帧:

unique_count = pd.groupby(['YEARMONTH'], as_index=False).agg(uniq_CLIENTCODE=('CLIENTCODE', pd.Series.count))

其他回答

有趣的是,len(unique())通常比nunique()快几倍(3 -15倍)。

这是另一种简单得多的方法。假设你的数据框架名为daat,列名为YEARMONTH:

daat.YEARMONTH.value_counts()

To obtain the number of different clients and sizes per year (i.e. number of unique values of multiple columns), use a list of columns: df.groupby('YEARMONTH')[['CLIENTCODE', 'SIZE']].nunique() Actually, the result from the above code can be obtained using SQL syntax on df using pandasql (a module built on pandas that lets you query pandas DataFrames using SQL syntax). #! pip install pandasql from pandasql import sqldf sqldf(""" SELECT COUNT(DISTINCT CLIENTCODE), COUNT(DISTINCT SIZE) FROM df GROUP BY YEARMONTH """) If you want to keep YEARMONTH as a column, i.e. the analog of the following SQL query SELECT YEARMONTH, COUNT(DISTINCT CLIENTCODE), COUNT(DISTINCT SIZE) FROM df GROUP BY YEARMONTH in pandas is the following (set as_index to False): df.groupby('YEARMONTH', as_index=False)[['CLIENTCODE', 'SIZE']].nunique() If you need to set custom names to the aggregated columns, i.e. the analog of the following SQL query: SELECT YEARMONTH, COUNT(DISTINCT CLIENTCODE) AS `No. clients`, COUNT(DISTINCT SIZE) AS `No. size` FROM df GROUP BY YEARMONTH use named aggregation in pandas: ( df.groupby('YEARMONTH', as_index=False) .agg(**{'No. clients':('CLIENTCODE', 'nunique'), 'No. size':('SIZE', 'nunique')}) )

使用新的Pandas版本,可以很容易地获得数据帧:

unique_count = pd.groupby(['YEARMONTH'], as_index=False).agg(uniq_CLIENTCODE=('CLIENTCODE', pd.Series.count))

这里有一种方法可以使多个列上的计数不同。让我们看一些数据:

data = {'CLIENT_CODE':[1,1,2,1,2,2,3],
        'YEAR_MONTH':[201301,201301,201301,201302,201302,201302,201302],
        'PRODUCT_CODE': [100,150,220,400,50,80,100]
       }
table = pd.DataFrame(data)
table

CLIENT_CODE YEAR_MONTH  PRODUCT_CODE
0   1       201301      100
1   1       201301      150
2   2       201301      220
3   1       201302      400
4   2       201302      50
5   2       201302      80
6   3       201302      100

现在,列出感兴趣的列,并在稍微修改的语法中使用groupby:

columns = ['YEAR_MONTH', 'PRODUCT_CODE']
table[columns].groupby(table['CLIENT_CODE']).nunique()

我们获得:

YEAR_MONTH  PRODUCT_CODE CLIENT_CODE
1           2            3
2           2            3
3           1            1