我用熊猫。To_datetime解析数据中的日期。Pandas默认情况下表示datetime64[ns]的日期,即使这些日期都是每天的。 我想知道是否有一种优雅/聪明的方法将日期转换为datetime。[D]这样,当我把数据写入CSV时,日期不会附加00:00:00。我知道我可以逐个元素手动转换类型:

[dt.to_datetime().date() for dt in df.dates]

但这真的很慢,因为我有很多行,这有点违背了使用pandas.to_datetime的目的。是否有一种方法可以一次转换整个列的dtype ?或者,熊猫也一样。to_datetime支持一个精度规范,以便我可以摆脱时间部分,同时与日常数据?


当前回答

如果该列不是datetime格式:

df['DTformat'] = pd.to_datetime(df['col'])

一旦它是datetime格式,你可以将整个列转换为日期,就像这样:

df['DateOnly'] = df['DTformat'].apply(lambda x: x.date())

其他回答

Pandas v0.13+:使用带date_format参数的to_csv

尽可能避免将datetime64[ns]系列转换为datetime的对象dtype系列。日期对象。后者通常使用pd.Series.dt构造。date,存储为指针数组,相对于纯基于numpy的序列效率较低。

由于您关心的是写入CSV时的格式,只需使用to_csv的date_format参数。例如:

df.to_csv(filename, date_format='%Y-%m-%d')

有关格式约定,请参阅Python的strftime指令。

从0.15.0版本开始,现在可以很容易地使用.dt来访问date组件:

df['just_date'] = df['dates'].dt.date

上面返回一个日期时间。Date dtype,如果你想要一个datetime64,那么你可以将time组件规范化为midnight,这样它就会将所有值设置为00:00:00:

df['normalised_date'] = df['dates'].dt.normalize()

这将dtype保持为datetime64,但是显示只显示日期值。

Pandas: .dt访问器 pandas.Series.dt

Pandas DatetimeIndex和Series有一个叫做normalize的方法,它可以做你想做的事情。

你可以在这个答案中了解更多。

它可以用作ser.dt.normalize()

简单的解决方案:

df['date_only'] = df['date_time_column'].dt.date

这是一个提取日期的简单方法:

import pandas as pd

d='2015-01-08 22:44:09' 
date=pd.to_datetime(d).date()
print(date)