Django可以很好地自动序列化从DB返回到JSON格式的ORM模型。

如何序列化SQLAlchemy查询结果为JSON格式?

我试过jsonpickle。编码,但它编码查询对象本身。 我尝试了json.dumps(items),但它返回

TypeError: <Product('3', 'some name', 'some desc')> is not JSON serializable

将SQLAlchemy ORM对象序列化为JSON /XML真的那么难吗?它没有任何默认序列化器吗?现在序列化ORM查询结果是非常常见的任务。

我所需要的只是返回SQLAlchemy查询结果的JSON或XML数据表示。

需要在javascript datagird中使用JSON/XML格式的SQLAlchemy对象查询结果(JQGrid http://www.trirand.com/blog/)


当前回答

我对使用(太多?)字典的看法:

def serialize(_query):
    #d = dictionary written to per row
    #D = dictionary d is written to each time, then reset
    #Master = dictionary of dictionaries; the id Key (int, unique from database) 
    from D is used as the Key for the dictionary D entry in Master
    Master = {}
    D = {}
    x = 0
    for u in _query:
        d = u.__dict__
        D = {}
        for n in d.keys():
           if n != '_sa_instance_state':
                    D[n] = d[n]
        x = d['id']
        Master[x] = D
    return Master

使用flask(包括jsonify)和flask_sqlalchemy将输出打印为JSON。

使用jsonify(serialize())调用该函数。

与我迄今为止尝试过的所有SQLAlchemy查询一起工作(运行SQLite3)

其他回答

出于安全考虑,您不应该返回模型的所有字段。我更喜欢有选择性地选择他们。

Flask的json编码现在支持UUID, datetime和relationships(并为flask_sqlalchemy db添加了query和query_class。模型类)。编码器我更新如下:

app / json_encoder.py

    from sqlalchemy.ext.declarative import DeclarativeMeta
    from flask import json


    class AlchemyEncoder(json.JSONEncoder):
        def default(self, o):
            if isinstance(o.__class__, DeclarativeMeta):
                data = {}
                fields = o.__json__() if hasattr(o, '__json__') else dir(o)
                for field in [f for f in fields if not f.startswith('_') and f not in ['metadata', 'query', 'query_class']]:
                    value = o.__getattribute__(field)
                    try:
                        json.dumps(value)
                        data[field] = value
                    except TypeError:
                        data[field] = None
                return data
            return json.JSONEncoder.default(self, o)

app / __init__ . py

# json encoding
from app.json_encoder import AlchemyEncoder
app.json_encoder = AlchemyEncoder

有了这个,我可以选择添加一个__json__属性,返回我希望编码的字段列表:

app / models.py

class Queue(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    song_id = db.Column(db.Integer, db.ForeignKey('song.id'), unique=True, nullable=False)
    song = db.relationship('Song', lazy='joined')
    type = db.Column(db.String(20), server_default=u'audio/mpeg')
    src = db.Column(db.String(255), nullable=False)
    created_at = db.Column(db.DateTime, server_default=db.func.now())
    updated_at = db.Column(db.DateTime, server_default=db.func.now(), onupdate=db.func.now())

    def __init__(self, song):
        self.song = song
        self.src = song.full_path

    def __json__(self):
        return ['song', 'src', 'type', 'created_at']

我添加@jsonapi到我的视图,返回结果列表,然后我的输出如下:

[

{

    "created_at": "Thu, 23 Jul 2015 11:36:53 GMT",
    "song": 

        {
            "full_path": "/static/music/Audioslave/Audioslave [2002]/1 Cochise.mp3",
            "id": 2,
            "path_name": "Audioslave/Audioslave [2002]/1 Cochise.mp3"
        },
    "src": "/static/music/Audioslave/Audioslave [2002]/1 Cochise.mp3",
    "type": "audio/mpeg"
}

]

虽然使用一些原始sql和未定义的对象,使用cursor.description似乎得到了我正在寻找的东西:

with connection.cursor() as cur:
    print(query)
    cur.execute(query)
    for item in cur.fetchall():
        row = {column.name: item[i] for i, column in enumerate(cur.description)}
        print(row)
def alc2json(row):
    return dict([(col, str(getattr(row,col))) for col in row.__table__.columns.keys()])

我想和她玩会儿代码高尔夫。

供参考:我使用automap_base,因为我们有一个根据业务需求单独设计的模式。我今天才开始使用SQLAlchemy,但是文档指出automap_base是declarative_base的扩展,这似乎是SQLAlchemy ORM中的典型范例,所以我相信这应该可以工作。

根据Tjorriemorrie的解决方案,它并没有跟随外键,而是简单地将列与值匹配,并通过str()-ing列值来处理Python类型。我们的值包括Python datetime。时间和小数。十进位类类型的结果,所以它完成了工作。

希望对路人有所帮助!

我对使用(太多?)字典的看法:

def serialize(_query):
    #d = dictionary written to per row
    #D = dictionary d is written to each time, then reset
    #Master = dictionary of dictionaries; the id Key (int, unique from database) 
    from D is used as the Key for the dictionary D entry in Master
    Master = {}
    D = {}
    x = 0
    for u in _query:
        d = u.__dict__
        D = {}
        for n in d.keys():
           if n != '_sa_instance_state':
                    D[n] = d[n]
        x = d['id']
        Master[x] = D
    return Master

使用flask(包括jsonify)和flask_sqlalchemy将输出打印为JSON。

使用jsonify(serialize())调用该函数。

与我迄今为止尝试过的所有SQLAlchemy查询一起工作(运行SQLite3)

向任何模型添加一个_dict方法的动态方法

from sqlalchemy.inspection import inspect

def implement_as_dict(model):
    if not hasattr(model,"as_dict"):
        column_names=[]
        imodel = inspect(model)
        for c in imodel.columns:
            column_names.append(c.key)

        #define model.as_dict()
        def as_dict(self):
            d = {}
            for c in column_names:
                d[c] = getattr(self,c)
            return d

        setattr(model,"as_dict",as_dict)

#model definition
class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String)
# adding as_dict definition to model
implement_as_dict(User)

然后你可以使用

user = session.query(User).filter_by(name='rick').first() 

user.as_dict()
#sample output 
{"id":1,"name":"rick"}