Django可以很好地自动序列化从DB返回到JSON格式的ORM模型。

如何序列化SQLAlchemy查询结果为JSON格式?

我试过jsonpickle。编码,但它编码查询对象本身。 我尝试了json.dumps(items),但它返回

TypeError: <Product('3', 'some name', 'some desc')> is not JSON serializable

将SQLAlchemy ORM对象序列化为JSON /XML真的那么难吗?它没有任何默认序列化器吗?现在序列化ORM查询结果是非常常见的任务。

我所需要的只是返回SQLAlchemy查询结果的JSON或XML数据表示。

需要在javascript datagird中使用JSON/XML格式的SQLAlchemy对象查询结果(JQGrid http://www.trirand.com/blog/)


当前回答

经过一番尝试,我想出了自己的解决方案

def to_dict(self):
    keys = self.__mapper__.attrs.keys()
    attrs = vars(self)
    return { k : attrs[k]  for k in keys}

其他回答

下面是一个解决方案,它允许您选择希望在输出中包含的关系。 注意:这是一个完整的重写,将dict/str作为一个参数,而不是一个列表。修复了一些东西..

def deep_dict(self, relations={}):
    """Output a dict of an SA object recursing as deep as you want.

    Takes one argument, relations which is a dictionary of relations we'd
    like to pull out. The relations dict items can be a single relation
    name or deeper relation names connected by sub dicts

    Example:
        Say we have a Person object with a family relationship
            person.deep_dict(relations={'family':None})
        Say the family object has homes as a relation then we can do
            person.deep_dict(relations={'family':{'homes':None}})
            OR
            person.deep_dict(relations={'family':'homes'})
        Say homes has a relation like rooms you can do
            person.deep_dict(relations={'family':{'homes':'rooms'}})
            and so on...
    """
    mydict =  dict((c, str(a)) for c, a in
                    self.__dict__.items() if c != '_sa_instance_state')
    if not relations:
        # just return ourselves
        return mydict

    # otherwise we need to go deeper
    if not isinstance(relations, dict) and not isinstance(relations, str):
        raise Exception("relations should be a dict, it is of type {}".format(type(relations)))

    # got here so check and handle if we were passed a dict
    if isinstance(relations, dict):
        # we were passed deeper info
        for left, right in relations.items():
            myrel = getattr(self, left)
            if isinstance(myrel, list):
                mydict[left] = [rel.deep_dict(relations=right) for rel in myrel]
            else:
                mydict[left] = myrel.deep_dict(relations=right)
    # if we get here check and handle if we were passed a string
    elif isinstance(relations, str):
        # passed a single item
        myrel = getattr(self, relations)
        left = relations
        if isinstance(myrel, list):
            mydict[left] = [rel.deep_dict(relations=None)
                                 for rel in myrel]
        else:
            mydict[left] = myrel.deep_dict(relations=None)

    return mydict

举个关于person/family/homes/rooms的例子…把它转换成json,你只需要

json.dumps(person.deep_dict(relations={'family':{'homes':'rooms'}}))

你可以把你的对象输出为一个字典:

class User:
   def as_dict(self):
       return {c.name: getattr(self, c.name) for c in self.__table__.columns}

然后使用User.as_dict()序列化对象。

如将sqlalchemy行对象转换为python dict中所述

向任何模型添加一个_dict方法的动态方法

from sqlalchemy.inspection import inspect

def implement_as_dict(model):
    if not hasattr(model,"as_dict"):
        column_names=[]
        imodel = inspect(model)
        for c in imodel.columns:
            column_names.append(c.key)

        #define model.as_dict()
        def as_dict(self):
            d = {}
            for c in column_names:
                d[c] = getattr(self,c)
            return d

        setattr(model,"as_dict",as_dict)

#model definition
class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String)
# adding as_dict definition to model
implement_as_dict(User)

然后你可以使用

user = session.query(User).filter_by(name='rick').first() 

user.as_dict()
#sample output 
{"id":1,"name":"rick"}

当使用sqlalchemy连接到db I时,这是一个高度可配置的简单解决方案。使用熊猫。

import pandas as pd
import sqlalchemy

#sqlalchemy engine configuration
engine = sqlalchemy.create_engine....

def my_function():
  #read in from sql directly into a pandas dataframe
  #check the pandas documentation for additional config options
  sql_DF = pd.read_sql_table("table_name", con=engine)

  # "orient" is optional here but allows you to specify the json formatting you require
  sql_json = sql_DF.to_json(orient="index")

  return sql_json

虽然最初的问题可以追溯到很久以前,但这里的答案数量(以及我自己的经验)表明,这是一个不平凡的问题,有许多不同的方法,不同的复杂性和不同的权衡。

这就是为什么我构建了SQLAthanor库,它扩展了SQLAlchemy的声明性ORM,支持可配置的序列化/反序列化,您可能想看看。

该库支持:

Python 2.7, 3.4, 3.5, and 3.6. SQLAlchemy versions 0.9 and higher serialization/de-serialization to/from JSON, CSV, YAML, and Python dict serialization/de-serialization of columns/attributes, relationships, hybrid properties, and association proxies enabling and disabling of serialization for particular formats and columns/relationships/attributes (e.g. you want to support an inbound password value, but never include an outbound one) pre-serialization and post-deserialization value processing (for validation or type coercion) a pretty straightforward syntax that is both Pythonic and seamlessly consistent with SQLAlchemy's own approach

你可以在这里查看(我希望!)全面的文档:https://sqlathanor.readthedocs.io/en/latest

希望这能有所帮助!