Django可以很好地自动序列化从DB返回到JSON格式的ORM模型。

如何序列化SQLAlchemy查询结果为JSON格式?

我试过jsonpickle。编码,但它编码查询对象本身。 我尝试了json.dumps(items),但它返回

TypeError: <Product('3', 'some name', 'some desc')> is not JSON serializable

将SQLAlchemy ORM对象序列化为JSON /XML真的那么难吗?它没有任何默认序列化器吗?现在序列化ORM查询结果是非常常见的任务。

我所需要的只是返回SQLAlchemy查询结果的JSON或XML数据表示。

需要在javascript datagird中使用JSON/XML格式的SQLAlchemy对象查询结果(JQGrid http://www.trirand.com/blog/)


当前回答

Python 3.7+和Flask 1.1+可以使用内置的数据类包

from dataclasses import dataclass
from datetime import datetime
from flask import Flask, jsonify
from flask_sqlalchemy import SQLAlchemy


app = Flask(__name__)
db = SQLAlchemy(app)


@dataclass
class User(db.Model):
  id: int
  email: str

  id = db.Column(db.Integer, primary_key=True, auto_increment=True)
  email = db.Column(db.String(200), unique=True)


@app.route('/users/')
def users():
  users = User.query.all()
  return jsonify(users)  


if __name__ == "__main__":
  users = User(email="user1@gmail.com"), User(email="user2@gmail.com")
  db.create_all()
  db.session.add_all(users)
  db.session.commit()
  app.run()

/users/路由现在将返回一个用户列表。

[
  {"email": "user1@gmail.com", "id": 1},
  {"email": "user2@gmail.com", "id": 2}
]

自动序列化相关模型

@dataclass
class Account(db.Model):
  id: int
  users: User

  id = db.Column(db.Integer)
  users = db.relationship(User)  # User model would need a db.ForeignKey field

jsonify(account)的响应是这样的。

{  
   "id":1,
   "users":[  
      {  
         "email":"user1@gmail.com",
         "id":1
      },
      {  
         "email":"user2@gmail.com",
         "id":2
      }
   ]
}

覆盖默认的JSON编码器

from flask.json import JSONEncoder


class CustomJSONEncoder(JSONEncoder):
  "Add support for serializing timedeltas"

  def default(o):
    if type(o) == datetime.timedelta:
      return str(o)
    if type(o) == datetime.datetime:
      return o.isoformat()
    return super().default(o)

app.json_encoder = CustomJSONEncoder      

其他回答

下面的代码将sqlalchemy结果序列化为json。

import json
from collections import OrderedDict


def asdict(self):
    result = OrderedDict()
    for key in self.__mapper__.c.keys():
        if getattr(self, key) is not None:
            result[key] = str(getattr(self, key))
        else:
            result[key] = getattr(self, key)
    return result


def to_array(all_vendors):
    v = [ ven.asdict() for ven in all_vendors ]
    return json.dumps(v) 

叫有趣,

def all_products():
    all_products = Products.query.all()
    return to_array(all_products)

我已经成功地使用了这个包:https://github.com/n0nSmoker/SQLAlchemy-serializer

你可以在模型上这样做:

from sqlalchemy_serializer import SerializerMixin

class SomeModel(db.Model, SerializerMixin):
    ...

它添加了完全递归的to_dict:

item = SomeModel.query.filter(...).one()
result = item.to_dict()

它可以让你制定规则来避免无限递归:

result = item.to_dict(rules=('-somefield', '-some_relation.nested_one.another_nested_one'))

AlchemyEncoder是很棒的,但有时会失败的十进制值。这是一个改进的编码器,解决十进制问题-

class AlchemyEncoder(json.JSONEncoder):
# To serialize SQLalchemy objects 
def default(self, obj):
    if isinstance(obj.__class__, DeclarativeMeta):
        model_fields = {}
        for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata']:
            data = obj.__getattribute__(field)
            print data
            try:
                json.dumps(data)  # this will fail on non-encodable values, like other classes
                model_fields[field] = data
            except TypeError:
                model_fields[field] = None
        return model_fields
    if isinstance(obj, Decimal):
        return float(obj)
    return json.JSONEncoder.default(self, obj)

我建议用棉花糖。它允许您创建序列化器来表示支持关系和嵌套对象的模型实例。

以下是他们文档中的一个删节的例子。以ORM模型为例,作者:

class Author(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    first = db.Column(db.String(80))
    last = db.Column(db.String(80))

该类的棉花糖模式是这样构造的:

class AuthorSchema(Schema):
    id = fields.Int(dump_only=True)
    first = fields.Str()
    last = fields.Str()
    formatted_name = fields.Method("format_name", dump_only=True)

    def format_name(self, author):
        return "{}, {}".format(author.last, author.first)

...并像这样使用:

author_schema = AuthorSchema()
author_schema.dump(Author.query.first())

...会产生这样的输出:

{
        "first": "Tim",
        "formatted_name": "Peters, Tim",
        "id": 1,
        "last": "Peters"
}

看看他们完整的Flask-SQLAlchemy示例。

一个名为marshmlow - SQLAlchemy的库专门集成了SQLAlchemy和marshmallow。在这个库中,上面描述的Author模型的模式如下所示:

class AuthorSchema(ModelSchema):
    class Meta:
        model = Author

该集成允许从SQLAlchemy Column类型推断字段类型。

marshmallow-sqlalchemy这里。

这并不是那么简单。我写了一些代码来做这件事。我还在开发中,它使用了MochiKit框架。它基本上使用代理和注册的JSON转换器在Python和Javascript之间转换复合对象。

数据库对象的浏览器端是db.js 它需要proxy.js中的基本Python代理源代码。

在Python方面,有基本代理模块。 最后是webserver.py中的SqlAlchemy对象编码器。 它还依赖于models.py文件中的元数据提取器。