Django可以很好地自动序列化从DB返回到JSON格式的ORM模型。

如何序列化SQLAlchemy查询结果为JSON格式?

我试过jsonpickle。编码,但它编码查询对象本身。 我尝试了json.dumps(items),但它返回

TypeError: <Product('3', 'some name', 'some desc')> is not JSON serializable

将SQLAlchemy ORM对象序列化为JSON /XML真的那么难吗?它没有任何默认序列化器吗?现在序列化ORM查询结果是非常常见的任务。

我所需要的只是返回SQLAlchemy查询结果的JSON或XML数据表示。

需要在javascript datagird中使用JSON/XML格式的SQLAlchemy对象查询结果(JQGrid http://www.trirand.com/blog/)


当前回答

2023年末

我的实现

def obj_to_dict(obj, remove=['_sa_instance_state'], debug=False):
    result = {}

    if type(obj).__name__ == "Row":
        return dict(obj)

    obj = obj.__dict__
    for key in obj:
        if key in remove:
            continue

        result[key] = obj[key]

    if debug:
        print(result)

    return result

其他回答

AlchemyEncoder是很棒的,但有时会失败的十进制值。这是一个改进的编码器,解决十进制问题-

class AlchemyEncoder(json.JSONEncoder):
# To serialize SQLalchemy objects 
def default(self, obj):
    if isinstance(obj.__class__, DeclarativeMeta):
        model_fields = {}
        for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata']:
            data = obj.__getattribute__(field)
            print data
            try:
                json.dumps(data)  # this will fail on non-encodable values, like other classes
                model_fields[field] = data
            except TypeError:
                model_fields[field] = None
        return model_fields
    if isinstance(obj, Decimal):
        return float(obj)
    return json.JSONEncoder.default(self, obj)

你可以像这样使用SqlAlchemy的自省:

mysql = SQLAlchemy()
from sqlalchemy import inspect

class Contacts(mysql.Model):  
    __tablename__ = 'CONTACTS'
    id = mysql.Column(mysql.Integer, primary_key=True)
    first_name = mysql.Column(mysql.String(128), nullable=False)
    last_name = mysql.Column(mysql.String(128), nullable=False)
    phone = mysql.Column(mysql.String(128), nullable=False)
    email = mysql.Column(mysql.String(128), nullable=False)
    street = mysql.Column(mysql.String(128), nullable=False)
    zip_code = mysql.Column(mysql.String(128), nullable=False)
    city = mysql.Column(mysql.String(128), nullable=False)
    def toDict(self):
        return { c.key: getattr(self, c.key) for c in inspect(self).mapper.column_attrs }

@app.route('/contacts',methods=['GET'])
def getContacts():
    contacts = Contacts.query.all()
    contactsArr = []
    for contact in contacts:
        contactsArr.append(contact.toDict()) 
    return jsonify(contactsArr)

@app.route('/contacts/<int:id>',methods=['GET'])
def getContact(id):
    contact = Contacts.query.get(id)
    return jsonify(contact.toDict())

从下面的答案中得到启发: 将sqlalchemy行对象转换为python dict

Flask-JsonTools包为您的模型提供了JsonSerializableBase基类的实现。

用法:

from sqlalchemy.ext.declarative import declarative_base
from flask.ext.jsontools import JsonSerializableBase

Base = declarative_base(cls=(JsonSerializableBase,))

class User(Base):
    #...

现在User模型可以神奇地序列化了。

如果你的框架不是Flask,你可以抓取代码

出于安全考虑,您不应该返回模型的所有字段。我更喜欢有选择性地选择他们。

Flask的json编码现在支持UUID, datetime和relationships(并为flask_sqlalchemy db添加了query和query_class。模型类)。编码器我更新如下:

app / json_encoder.py

    from sqlalchemy.ext.declarative import DeclarativeMeta
    from flask import json


    class AlchemyEncoder(json.JSONEncoder):
        def default(self, o):
            if isinstance(o.__class__, DeclarativeMeta):
                data = {}
                fields = o.__json__() if hasattr(o, '__json__') else dir(o)
                for field in [f for f in fields if not f.startswith('_') and f not in ['metadata', 'query', 'query_class']]:
                    value = o.__getattribute__(field)
                    try:
                        json.dumps(value)
                        data[field] = value
                    except TypeError:
                        data[field] = None
                return data
            return json.JSONEncoder.default(self, o)

app / __init__ . py

# json encoding
from app.json_encoder import AlchemyEncoder
app.json_encoder = AlchemyEncoder

有了这个,我可以选择添加一个__json__属性,返回我希望编码的字段列表:

app / models.py

class Queue(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    song_id = db.Column(db.Integer, db.ForeignKey('song.id'), unique=True, nullable=False)
    song = db.relationship('Song', lazy='joined')
    type = db.Column(db.String(20), server_default=u'audio/mpeg')
    src = db.Column(db.String(255), nullable=False)
    created_at = db.Column(db.DateTime, server_default=db.func.now())
    updated_at = db.Column(db.DateTime, server_default=db.func.now(), onupdate=db.func.now())

    def __init__(self, song):
        self.song = song
        self.src = song.full_path

    def __json__(self):
        return ['song', 'src', 'type', 'created_at']

我添加@jsonapi到我的视图,返回结果列表,然后我的输出如下:

[

{

    "created_at": "Thu, 23 Jul 2015 11:36:53 GMT",
    "song": 

        {
            "full_path": "/static/music/Audioslave/Audioslave [2002]/1 Cochise.mp3",
            "id": 2,
            "path_name": "Audioslave/Audioslave [2002]/1 Cochise.mp3"
        },
    "src": "/static/music/Audioslave/Audioslave [2002]/1 Cochise.mp3",
    "type": "audio/mpeg"
}

]

我建议用棉花糖。它允许您创建序列化器来表示支持关系和嵌套对象的模型实例。

以下是他们文档中的一个删节的例子。以ORM模型为例,作者:

class Author(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    first = db.Column(db.String(80))
    last = db.Column(db.String(80))

该类的棉花糖模式是这样构造的:

class AuthorSchema(Schema):
    id = fields.Int(dump_only=True)
    first = fields.Str()
    last = fields.Str()
    formatted_name = fields.Method("format_name", dump_only=True)

    def format_name(self, author):
        return "{}, {}".format(author.last, author.first)

...并像这样使用:

author_schema = AuthorSchema()
author_schema.dump(Author.query.first())

...会产生这样的输出:

{
        "first": "Tim",
        "formatted_name": "Peters, Tim",
        "id": 1,
        "last": "Peters"
}

看看他们完整的Flask-SQLAlchemy示例。

一个名为marshmlow - SQLAlchemy的库专门集成了SQLAlchemy和marshmallow。在这个库中,上面描述的Author模型的模式如下所示:

class AuthorSchema(ModelSchema):
    class Meta:
        model = Author

该集成允许从SQLAlchemy Column类型推断字段类型。

marshmallow-sqlalchemy这里。