当突变是有条件的(取决于某些列值的值)时,可以使用突变吗?
这个例子有助于说明我的意思。
structure(list(a = c(1, 3, 4, 6, 3, 2, 5, 1), b = c(1, 3, 4,
2, 6, 7, 2, 6), c = c(6, 3, 6, 5, 3, 6, 5, 3), d = c(6, 2, 4,
5, 3, 7, 2, 6), e = c(1, 2, 4, 5, 6, 7, 6, 3), f = c(2, 3, 4,
2, 2, 7, 5, 2)), .Names = c("a", "b", "c", "d", "e", "f"), row.names = c(NA,
8L), class = "data.frame")
a b c d e f
1 1 1 6 6 1 2
2 3 3 3 2 2 3
3 4 4 6 4 4 4
4 6 2 5 5 5 2
5 3 6 3 3 6 2
6 2 7 6 7 7 7
7 5 2 5 2 6 5
8 1 6 3 6 3 2
我希望找到一个解决方案,我的问题使用dplyr包(是的,我知道这不是代码,应该工作,但我猜它使目的明确)创建一个新的列g:
library(dplyr)
df <- mutate(df,
if (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)){g = 2},
if (a == 0 | a == 1 | a == 4 | a == 3 | c == 4) {g = 3})
在这个特定的例子中,我正在寻找的代码的结果应该是这样的:
a b c d e f g
1 1 1 6 6 1 2 3
2 3 3 3 2 2 3 3
3 4 4 6 4 4 4 3
4 6 2 5 5 5 2 NA
5 3 6 3 3 6 2 NA
6 2 7 6 7 7 7 2
7 5 2 5 2 6 5 2
8 1 6 3 6 3 2 3
有人知道如何在dplyr中做到这一点吗?这个数据帧只是一个例子,我要处理的数据帧要大得多。由于它的速度,我尝试使用dplyr,但也许有其他更好的方法来处理这个问题?
既然你要求其他更好的方法来处理这个问题,下面是使用data.table的另一种方法:
require(data.table)
setDT(df)
df[a %in% c(0,1,3,4) | c == 4, g := 3L]
df[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
注意,为了正确地得到g,条件语句的顺序颠倒了。没有复制g,即使在第二次赋值的时候——它被替换了。
在较大的数据上,这将比使用嵌套的if-else具有更好的性能,因为它可以同时评估“是”和“否”情况,并且嵌套会变得难以读取/维护。
以下是相对较大数据的基准:
# NB: benchmark timings are as of R 3.1.0, data.table v1.9.2
require(data.table)
require(dplyr)
DT <- setDT(lapply(1:6, function(x) sample(7, 1e7, TRUE)))
setnames(DT, letters[1:6])
# > dim(DT)
# [1] 10000000 6
DF <- as.data.frame(DT)
DT_fun <- function(DT) {
DT[(a %in% c(0,1,3,4) | c == 4), g := 3L]
DT[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
}
DPLYR_fun <- function(DF) {
mutate(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
BASE_fun <- function(DF) { # R v3.1.0
transform(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
system.time(ans1 <- DT_fun(DT))
# user system elapsed
# 2.659 0.420 3.107
system.time(ans2 <- DPLYR_fun(DF))
# user system elapsed
# 11.822 1.075 12.976
system.time(ans3 <- BASE_fun(DF))
# user system elapsed
# 11.676 1.530 13.319
identical(as.data.frame(ans1), as.data.frame(ans2))
# [1] TRUE
identical(as.data.frame(ans1), as.data.frame(ans3))
# [1] TRUE
不确定这是否是你要求的替代方案,但我希望它能有所帮助。
Dplyr现在有一个函数case_when,它提供了一个向量化的if。与mosaic:::derivedFactor相比,语法有点奇怪,因为您不能以标准的dplyr方式访问变量,并且需要声明NA模式,但它比mosaic:::derivedFactor快得多。
df %>%
mutate(g = case_when(a %in% c(2,5,7) | (a==1 & b==4) ~ 2L,
a %in% c(0,1,3,4) | c == 4 ~ 3L,
TRUE~as.integer(NA)))
编辑:如果你使用的是包0.7.0版本之前的dplyr::case_when(),那么你需要在变量名前面加上'。$'(例如在case_when中写入.$a == 1)。
基准:
对于基准测试(重用Arun帖子中的函数)和减少样本量:
require(data.table)
require(mosaic)
require(dplyr)
require(microbenchmark)
set.seed(42) # To recreate the dataframe
DT <- setDT(lapply(1:6, function(x) sample(7, 10000, TRUE)))
setnames(DT, letters[1:6])
DF <- as.data.frame(DT)
DPLYR_case_when <- function(DF) {
DF %>%
mutate(g = case_when(a %in% c(2,5,7) | (a==1 & b==4) ~ 2L,
a %in% c(0,1,3,4) | c==4 ~ 3L,
TRUE~as.integer(NA)))
}
DT_fun <- function(DT) {
DT[(a %in% c(0,1,3,4) | c == 4), g := 3L]
DT[a %in% c(2,5,7) | (a==1 & b==4), g := 2L]
}
DPLYR_fun <- function(DF) {
mutate(DF, g = ifelse(a %in% c(2,5,7) | (a==1 & b==4), 2L,
ifelse(a %in% c(0,1,3,4) | c==4, 3L, NA_integer_)))
}
mosa_fun <- function(DF) {
mutate(DF, g = derivedFactor(
"2" = (a == 2 | a == 5 | a == 7 | (a == 1 & b == 4)),
"3" = (a == 0 | a == 1 | a == 4 | a == 3 | c == 4),
.method = "first",
.default = NA
))
}
perf_results <- microbenchmark(
dt_fun <- DT_fun(copy(DT)),
dplyr_ifelse <- DPLYR_fun(copy(DF)),
dplyr_case_when <- DPLYR_case_when(copy(DF)),
mosa <- mosa_fun(copy(DF)),
times = 100L
)
这给:
print(perf_results)
Unit: milliseconds
expr min lq mean median uq max neval
dt_fun 1.391402 1.560751 1.658337 1.651201 1.716851 2.383801 100
dplyr_ifelse 1.172601 1.230351 1.331538 1.294851 1.390351 1.995701 100
dplyr_case_when 1.648201 1.768002 1.860968 1.844101 1.958801 2.207001 100
mosa 255.591301 281.158350 291.391586 286.549802 292.101601 545.880702 100
case_when现在是sql风格case的一个非常干净的实现,当:
structure(list(a = c(1, 3, 4, 6, 3, 2, 5, 1), b = c(1, 3, 4,
2, 6, 7, 2, 6), c = c(6, 3, 6, 5, 3, 6, 5, 3), d = c(6, 2, 4,
5, 3, 7, 2, 6), e = c(1, 2, 4, 5, 6, 7, 6, 3), f = c(2, 3, 4,
2, 2, 7, 5, 2)), .Names = c("a", "b", "c", "d", "e", "f"), row.names = c(NA,
8L), class = "data.frame") -> df
df %>%
mutate( g = case_when(
a == 2 | a == 5 | a == 7 | (a == 1 & b == 4 ) ~ 2,
a == 0 | a == 1 | a == 4 | a == 3 | c == 4 ~ 3
))
使用dplyr 0.7.4
手册:http://dplyr.tidyverse.org/reference/case_when.html