在Python中,哪种数据结构更高效/快速?假设顺序对我来说不重要,无论如何我都会检查重复,Python集比Python列表慢吗?
当前回答
集合更快,而且你可以得到更多有集合的函数,比如你有两个集合:
set1 = {"Harry Potter", "James Bond", "Iron Man"}
set2 = {"Captain America", "Black Widow", "Hulk", "Harry Potter", "James Bond"}
我们可以很容易地连接两个集合:
set3 = set1.union(set2)
找出两者的共同点:
set3 = set1.intersection(set2)
找出两者的不同之处:
set3 = set1.difference(set2)
还有更多!试试吧,很有趣的!此外,如果你必须处理两个列表中的不同值或两个列表中的通用值,我更喜欢将列表转换为集合,许多程序员都是这样做的。 希望它能帮助你:-)
其他回答
我感兴趣的结果时,检查与CPython,如果一个值是一个少量文字。set在python3中胜过tuple, list和or:
from timeit import timeit
def in_test1():
for i in range(1000):
if i in (314, 628):
pass
def in_test2():
for i in range(1000):
if i in [314, 628]:
pass
def in_test3():
for i in range(1000):
if i in {314, 628}:
pass
def in_test4():
for i in range(1000):
if i == 314 or i == 628:
pass
print("tuple")
print(timeit("in_test1()", setup="from __main__ import in_test1", number=100000))
print("list")
print(timeit("in_test2()", setup="from __main__ import in_test2", number=100000))
print("set")
print(timeit("in_test3()", setup="from __main__ import in_test3", number=100000))
print("or")
print(timeit("in_test4()", setup="from __main__ import in_test4", number=100000))
输出:
tuple
4.735646052286029
list
4.7308746771886945
set
3.5755991376936436
or
4.687681658193469
对于3到5个字面量,set仍然以较大的优势胜出,并且or成为最慢的。
在Python 2中,set总是最慢的。Or是2到3个字面量时最快的,tuple和list是4个或更多字面量时更快的。我无法区分元组和列表的速度。
当要测试的值缓存在函数外的全局变量中,而不是在循环中创建文字时,set每次都胜出,即使在python2中也是如此。
这些结果适用于Core i7上的64位CPython。
集合更快,而且你可以得到更多有集合的函数,比如你有两个集合:
set1 = {"Harry Potter", "James Bond", "Iron Man"}
set2 = {"Captain America", "Black Widow", "Hulk", "Harry Potter", "James Bond"}
我们可以很容易地连接两个集合:
set3 = set1.union(set2)
找出两者的共同点:
set3 = set1.intersection(set2)
找出两者的不同之处:
set3 = set1.difference(set2)
还有更多!试试吧,很有趣的!此外,如果你必须处理两个列表中的不同值或两个列表中的通用值,我更喜欢将列表转换为集合,许多程序员都是这样做的。 希望它能帮助你:-)
与@Ellis Percival的测试相同,我想添加的是,在添加元素时,列表以类似于集合的方式执行。
添加元素
>>> def add_test_set(iterable):
... for i in range(10000):
... iterable.add(i)
...
>>> def add_test_list(iterable):
... for i in range(10000):
... iterable.append(i)
...
>>> timeit("add_test_set(iterable)",
... setup="from __main__ import add_test_set; iterable = set()",
... number=10000)
7.073143866999999
>>> timeit("add_test_list(iterable)",
... setup="from __main__ import add_test_list; iterable = list()",
... number=10000)
6.80650725000001
(我本来想编辑他的帖子,但编辑队列已经满了)
我建议使用Set实现,用例仅限于引用或搜索存在,而使用Tuple实现,用例要求执行迭代。列表是一种低级实现,需要大量内存开销。
from datetime import datetime
listA = range(10000000)
setA = set(listA)
tupA = tuple(listA)
#Source Code
def calc(data, type):
start = datetime.now()
if data in type:
print ""
end = datetime.now()
print end-start
calc(9999, listA)
calc(9999, tupA)
calc(9999, setA)
比较所有3个迭代10次后的输出: 比较
推荐文章
- 在每个列表元素上调用int()函数?
- 将Set<T>转换为List<T>的最简洁的方法
- 当使用代码存储库时,如何引用资源的相对路径
- 在SQL Server上使用varchar(MAX) vs TEXT
- .toArray(new MyClass[0]) or .toArray(new MyClass[myList.size()])?
- 如何在Flask-SQLAlchemy中按id删除记录
- 在Python中插入列表的第一个位置
- 在javascript中从平面数组构建树数组
- Python Pandas只合并某些列
- 如何在一行中连接两个集而不使用“|”
- 从字符串中移除前缀
- 代码结束时发出警报
- 如何在Python中按字母顺序排序字符串中的字母
- 在matplotlib中将y轴标签添加到次要y轴
- 如何消除数独方块的凹凸缺陷?