下面的Java程序平均需要0.50到0.55秒的时间来运行:

public static void main(String[] args) {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    System.out.println(
        (double) (System.nanoTime() - startTime) / 1000000000 + " s");
    System.out.println("n = " + n);
}

如果我将2 * (I * I)替换为2 * I * I,它将花费0.60到0.65秒的时间运行。如何来吗?

我把程序的每个版本都运行了15次,在两者之间交替运行。以下是调查结果:

 2*(i*i)  │  2*i*i
──────────┼──────────
0.5183738 │ 0.6246434
0.5298337 │ 0.6049722
0.5308647 │ 0.6603363
0.5133458 │ 0.6243328
0.5003011 │ 0.6541802
0.5366181 │ 0.6312638
0.515149  │ 0.6241105
0.5237389 │ 0.627815
0.5249942 │ 0.6114252
0.5641624 │ 0.6781033
0.538412  │ 0.6393969
0.5466744 │ 0.6608845
0.531159  │ 0.6201077
0.5048032 │ 0.6511559
0.5232789 │ 0.6544526

2 * i * i的最快运行时间比2 * (i * i)的最慢运行时间长。如果它们具有相同的效率,发生这种情况的概率将小于1/2^15 * 100% = 0.00305%。


当前回答

虽然与问题的环境没有直接关系,但出于好奇,我在。net Core 2.1 x64发布模式上做了同样的测试。

这是一个有趣的结果,证实了类似的现象(相反)发生在原力的黑暗面。代码:

static void Main(string[] args)
{
    Stopwatch watch = new Stopwatch();

    Console.WriteLine("2 * (i * i)");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * (i * i);
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds} ms");
    }

    Console.WriteLine();
    Console.WriteLine("2 * i * i");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * i * i;
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds}ms");
    }
}

结果:

2 * (i * i)

结果:119860736,438 ms 结果:119860736,433 ms 结果:119860736,437 ms 结果:119860736,435毫秒 结果:119860736,436 ms 结果:119860736,435毫秒 结果:119860736,435毫秒 结果:119860736,439 ms 结果:119860736,436 ms 结果:119860736,437 ms

2 * I * I

结果:119860736,417毫秒 结果:119860736,417毫秒 结果:119860736,417毫秒 结果:119860736,418 ms 结果:119860736,418 ms 结果:119860736,417毫秒 结果:119860736,418 ms 结果:119860736,416毫秒 结果:119860736,417毫秒 结果:119860736,418 ms

其他回答

虽然与问题的环境没有直接关系,但出于好奇,我在。net Core 2.1 x64发布模式上做了同样的测试。

这是一个有趣的结果,证实了类似的现象(相反)发生在原力的黑暗面。代码:

static void Main(string[] args)
{
    Stopwatch watch = new Stopwatch();

    Console.WriteLine("2 * (i * i)");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * (i * i);
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds} ms");
    }

    Console.WriteLine();
    Console.WriteLine("2 * i * i");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * i * i;
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds}ms");
    }
}

结果:

2 * (i * i)

结果:119860736,438 ms 结果:119860736,433 ms 结果:119860736,437 ms 结果:119860736,435毫秒 结果:119860736,436 ms 结果:119860736,435毫秒 结果:119860736,435毫秒 结果:119860736,439 ms 结果:119860736,436 ms 结果:119860736,437 ms

2 * I * I

结果:119860736,417毫秒 结果:119860736,417毫秒 结果:119860736,417毫秒 结果:119860736,418 ms 结果:119860736,418 ms 结果:119860736,417毫秒 结果:119860736,418 ms 结果:119860736,416毫秒 结果:119860736,417毫秒 结果:119860736,418 ms

我尝试了一个使用默认原型的JMH:我还添加了一个基于Runemoro解释的优化版本。

@State(Scope.Benchmark)
@Warmup(iterations = 2)
@Fork(1)
@Measurement(iterations = 10)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
//@BenchmarkMode({ Mode.All })
@BenchmarkMode(Mode.AverageTime)
public class MyBenchmark {
  @Param({ "100", "1000", "1000000000" })
  private int size;

  @Benchmark
  public int two_square_i() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * (i * i);
    }
    return n;
  }

  @Benchmark
  public int square_i_two() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += i * i;
    }
    return 2*n;
  }

  @Benchmark
  public int two_i_() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * i * i;
    }
    return n;
  }
}

结果如下:

Benchmark                           (size)  Mode  Samples          Score   Score error  Units
o.s.MyBenchmark.square_i_two           100  avgt       10         58,062         1,410  ns/op
o.s.MyBenchmark.square_i_two          1000  avgt       10        547,393        12,851  ns/op
o.s.MyBenchmark.square_i_two    1000000000  avgt       10  540343681,267  16795210,324  ns/op
o.s.MyBenchmark.two_i_                 100  avgt       10         87,491         2,004  ns/op
o.s.MyBenchmark.two_i_                1000  avgt       10       1015,388        30,313  ns/op
o.s.MyBenchmark.two_i_          1000000000  avgt       10  967100076,600  24929570,556  ns/op
o.s.MyBenchmark.two_square_i           100  avgt       10         70,715         2,107  ns/op
o.s.MyBenchmark.two_square_i          1000  avgt       10        686,977        24,613  ns/op
o.s.MyBenchmark.two_square_i    1000000000  avgt       10  652736811,450  27015580,488  ns/op

在我的个人电脑上(酷睿i7 860 -除了在我的智能手机上阅读之外,它什么都没做):

N += i*i则N *2优先 2 * (i * i)是第二。

JVM的优化方式显然与人类不同(根据Runemoro的回答)。

现在,读取字节码:javap -c -v ./target/classes/org/sample/MyBenchmark.class

2*(i*i)(左)和2*i*i(右)的区别:https://www.diffchecker.com/cvSFppWI 2*(i*i)与优化版本的区别:https://www.diffchecker.com/I1XFu5dP

我不是字节码方面的专家,但我们在imul之前使用iload_2:这可能是你得到区别的地方:我可以假设JVM优化读取I两次(I已经在这里,不需要再次加载它),而在2* I * I中它不能。

使用Java 11并使用以下VM选项关闭循环展开的有趣观察:

-XX:LoopUnrollLimit=0

带有2 * (i * i)表达式的循环会产生更紧凑的本机代码1:

L0001: add    eax,r11d
       inc    r8d
       mov    r11d,r8d
       imul   r11d,r8d
       shl    r11d,1h
       cmp    r8d,r10d
       jl     L0001

与2 * I * I版本相比:

L0001: add    eax,r11d
       mov    r11d,r8d
       shl    r11d,1h
       add    r11d,2h
       inc    r8d
       imul   r11d,r8d
       cmp    r8d,r10d
       jl     L0001

Java版本:

java version "11" 2018-09-25
Java(TM) SE Runtime Environment 18.9 (build 11+28)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11+28, mixed mode)

基准测试结果:

Benchmark          (size)  Mode  Cnt    Score     Error  Units
LoopTest.fast  1000000000  avgt    5  694,868 ±  36,470  ms/op
LoopTest.slow  1000000000  avgt    5  769,840 ± 135,006  ms/op

基准测试源代码:

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Warmup(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@State(Scope.Thread)
@Fork(1)
public class LoopTest {

    @Param("1000000000") private int size;

    public static void main(String[] args) throws RunnerException {
        Options opt = new OptionsBuilder()
            .include(LoopTest.class.getSimpleName())
            .jvmArgs("-XX:LoopUnrollLimit=0")
            .build();
        new Runner(opt).run();
    }

    @Benchmark
    public int slow() {
        int n = 0;
        for (int i = 0; i < size; i++)
            n += 2 * i * i;
        return n;
    }

    @Benchmark
    public int fast() {
        int n = 0;
        for (int i = 0; i < size; i++)
            n += 2 * (i * i);
        return n;
    }
}

1 -虚拟机选项使用:- xx:+UnlockDiagnosticVMOptions - xx:+PrintAssembly - xx:LoopUnrollLimit=0

字节码:https://cs.nyu.edu/courses/fall00/V22.0201-001/jvm2.html 字节码查看器:https://github.com/Konloch/bytecode-viewer

在我的JDK (Windows 10 64位,1.8.0_65-b17)上,我可以复制并解释:

public static void main(String[] args) {
    int repeat = 10;
    long A = 0;
    long B = 0;
    for (int i = 0; i < repeat; i++) {
        A += test();
        B += testB();
    }

    System.out.println(A / repeat + " ms");
    System.out.println(B / repeat + " ms");
}


private static long test() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multi(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multi(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms A " + n);
    return ms;
}


private static long testB() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multiB(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multiB(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms B " + n);
    return ms;
}

private static int multiB(int i) {
    return 2 * (i * i);
}

private static int multi(int i) {
    return 2 * i * i;
}

输出:

...
405 ms A 785527736
327 ms B 785527736
404 ms A 785527736
329 ms B 785527736
404 ms A 785527736
328 ms B 785527736
404 ms A 785527736
328 ms B 785527736
410 ms
333 ms

所以为什么? 字节代码如下:

 private static multiB(int arg0) { // 2 * (i * i)
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         iload0
         imul
         imul
         ireturn
     }
     L2 {
     }
 }

 private static multi(int arg0) { // 2 * i * i
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         imul
         iload0
         imul
         ireturn
     }
     L2 {
     }
 }

区别在于: 括号(2 * (i * i)):

Push const堆栈 将本地文件推入堆栈 将本地文件推入堆栈 将堆栈顶部相乘 将堆栈顶部相乘

不带括号(2 * i * i):

Push const堆栈 将本地文件推入堆栈 将堆栈顶部相乘 将本地文件推入堆栈 将堆栈顶部相乘

将所有内容加载到堆栈,然后再返回,这比在添加堆栈和操作堆栈之间切换要快。

我得到了类似的结果:

2 * (i * i): 0.458765943 s, n=119860736
2 * i * i: 0.580255126 s, n=119860736

如果两个循环都在同一个程序中,或者每个循环都在单独的.java文件/.class中,在单独的运行中执行,我得到了相同的结果。

最后,这里是一个javap -c -v <.java>的反编译:

     3: ldc           #3                  // String 2 * (i * i):
     5: invokevirtual #4                  // Method java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: iload         4
    30: imul
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

vs.

     3: ldc           #3                  // String 2 * i * i:
     5: invokevirtual #4                  // Method java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: imul
    29: iload         4
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

仅供参考,

java -version
java version "1.8.0_121"
Java(TM) SE Runtime Environment (build 1.8.0_121-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)