我试图做的是提取海拔数据从谷歌地图API沿纬度和经度坐标指定的路径,如下所示:

from urllib2 import Request, urlopen
import json

path1 = '42.974049,-81.205203|42.974298,-81.195755'
request=Request('http://maps.googleapis.com/maps/api/elevation/json?locations='+path1+'&sensor=false')
response = urlopen(request)
elevations = response.read()

得到的数据是这样的:

elevations.splitlines()

['{',
 '   "results" : [',
 '      {',
 '         "elevation" : 243.3462677001953,',
 '         "location" : {',
 '            "lat" : 42.974049,',
 '            "lng" : -81.205203',
 '         },',
 '         "resolution" : 19.08790397644043',
 '      },',
 '      {',
 '         "elevation" : 244.1318664550781,',
 '         "location" : {',
 '            "lat" : 42.974298,',
 '            "lng" : -81.19575500000001',
 '         },',
 '         "resolution" : 19.08790397644043',
 '      }',
 '   ],',
 '   "status" : "OK"',
 '}']

当放入作为DataFrame这里是我得到的:

pd.read_json(elevations)

这就是我想要的:

我不确定这是否可能,但主要是我在寻找的是一种方法,能够把海拔,纬度和经度数据放在一个熊猫数据框架(不需要有花哨的多行头)。

如果有人可以帮助或提供一些建议,这些数据的工作将是伟大的!如果你看不出我以前没有太多使用json数据…

编辑:

这个方法并不那么吸引人,但似乎很有效:

data = json.loads(elevations)
lat,lng,el = [],[],[]
for result in data['results']:
    lat.append(result[u'location'][u'lat'])
    lng.append(result[u'location'][u'lng'])
    el.append(result[u'elevation'])
df = pd.DataFrame([lat,lng,el]).T

最终数据框架有列纬度,经度,海拔


当前回答

参考MongoDB文档,我得到了以下代码:

from pandas import DataFrame
df = DataFrame('Your json string')

其他回答

使用Json加载文件,并使用dataframe .from_dict函数将其转换为熊猫数据帧

import json
import pandas as pd
json_string = '{ "name":"John", "age":30, "car":"None" }'

a_json = json.loads(json_string)
print(a_json)

dataframe = pd.DataFrame.from_dict(a_json)

下面是一个小实用程序类,它可以将JSON转换为DataFrame和DataFrame:希望这对您有帮助。

# -*- coding: utf-8 -*-
from pandas.io.json import json_normalize

class DFConverter:

    #Converts the input JSON to a DataFrame
    def convertToDF(self,dfJSON):
        return(json_normalize(dfJSON))

    #Converts the input DataFrame to JSON 
    def convertToJSON(self, df):
        resultJSON = df.to_json(orient='records')
        return(resultJSON)

看看这个剪报。

# reading the JSON data using json.load()
file = 'data.json'
with open(file) as train_file:
    dict_train = json.load(train_file)

# converting json dataset from dictionary to dataframe
train = pd.DataFrame.from_dict(dict_train, orient='index')
train.reset_index(level=0, inplace=True)

希望能有所帮助。

Rumble通过JSONiq原生支持JSON,运行在Spark上,内部管理DataFrames,所以你不需要这样做——即使数据不是完全结构化的:

let $coords := "42.974049,-81.205203%7C42.974298,-81.195755"
let $request := json-doc("http://maps.googleapis.com/maps/api/elevation/json?locations="||$coords||"&sensor=false")
for $obj in $request.results[]
return {
  "latitude" : $obj.location.lat,
  "longitude" : $obj.location.lng,
  "elevation" : $obj.elevation
}

结果可以导出为CSV,然后以任何其他主机语言作为DataFrame重新打开。

问题是数据帧中有几列包含字典,其中包含更小的字典。有用的Json通常有大量嵌套。我一直在写一些小函数,把我想要的信息拉到一个新的列中。这样我就有了我想要的格式。

for row in range(len(data)):
    #First I load the dict (one at a time)
    n = data.loc[row,'dict_column']
    #Now I make a new column that pulls out the data that I want.
    data.loc[row,'new_column'] = n.get('key')