我有以下代码:

r = numpy.zeros(shape = (width, height, 9))

它创建了一个宽x高x 9的矩阵,全是0。相反,我想知道是否有一个函数或方法,以一种简单的方式将它们初始化为nan。


当前回答

只是一个警告,使用np.empty()初始化而不随后编辑值可能会导致(内存分配?)问题:

arr1 = np.empty(96)
arr2 = np.empty(96)
print(arr1)
print(arr2)

# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan  1.  1.
#   1.  1.  2.  2.  2.  2. nan nan nan nan nan nan nan nan  0.  0.  0.  0.
#   0.  0.  0.  0. nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan]
#
# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan  1.  1.
#   1.  1.  2.  2.  2.  2. nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan]

在数组中初始化的浮点数在我的脚本中的其他地方使用,但与变量arr1或arr2根本没有关联。令人毛骨悚然的。

来自用户@JHBonarius的回答解决了这个问题:

arr = np.tile(np.nan, 96)
print(arr)

# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan]

其他回答

这里还没有提到的另一种可能性是使用NumPy平铺:

a = numpy.tile(numpy.nan, (3, 3))

也给了

array([[ NaN,  NaN,  NaN],
       [ NaN,  NaN,  NaN],
       [ NaN,  NaN,  NaN]])

我不知道速度比较。

另一种选择是使用numpy。full, NumPy 1.8+中可用的选项

a = np.full([height, width, 9], np.nan)

这是非常灵活的,你可以用任何你想要的数字来填充它。

只是一个警告,使用np.empty()初始化而不随后编辑值可能会导致(内存分配?)问题:

arr1 = np.empty(96)
arr2 = np.empty(96)
print(arr1)
print(arr2)

# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan  1.  1.
#   1.  1.  2.  2.  2.  2. nan nan nan nan nan nan nan nan  0.  0.  0.  0.
#   0.  0.  0.  0. nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan]
#
# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan  1.  1.
#   1.  1.  2.  2.  2.  2. nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan]

在数组中初始化的浮点数在我的脚本中的其他地方使用,但与变量arr1或arr2根本没有关联。令人毛骨悚然的。

来自用户@JHBonarius的回答解决了这个问题:

arr = np.tile(np.nan, 96)
print(arr)

# [nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan
#  nan nan nan nan nan nan]
>>> width = 2
>>> height = 3

>>> r = np.full((width, height, 9), np.nan)

>>> print(r)

array([[[nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan]],

       [[nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan, nan, nan, nan, nan]]])

>>> r.shape
(2, 3, 9)

如果你没有立即回忆起.empty或.full方法,你总是可以使用乘法:

>>> np.nan * np.ones(shape=(3,2))
array([[ nan,  nan],
       [ nan,  nan],
       [ nan,  nan]])

当然,它也适用于任何其他数值:

>>> 42 * np.ones(shape=(3,2))
array([[ 42,  42],
       [ 42,  42],
       [ 42, 42]])

但是@u0b34a0f6ae接受的答案是快3倍(CPU周期,而不是大脑周期来记住numpy语法;):

$ python -mtimeit "import numpy as np; X = np.empty((100,100));" "X[:] = np.nan;"
100000 loops, best of 3: 8.9 usec per loop
(predict)laneh@predict:~/src/predict/predict/webapp$ master
$ python -mtimeit "import numpy as np; X = np.ones((100,100));" "X *= np.nan;"
10000 loops, best of 3: 24.9 usec per loop