一个拥有100个属性的对象所消耗的内存空间是否与100个对象各有一个属性所消耗的内存空间相同?

为一个对象分配了多少内存? 添加属性时使用了多少额外空间?


当前回答

不,100个小对象比一个大对象需要更多的信息(内存)。

其他回答

我已经从另一个答案中提到的java.lang.instrument.Instrumentation方法中获得了非常好的结果。有关它的使用示例,请参阅java专家通讯和java。SourceForge上的sizeOf库。

Mindprod指出,这不是一个简单的问题:

A JVM is free to store data any way it pleases internally, big or little endian, with any amount of padding or overhead, though primitives must behave as if they had the official sizes. For example, the JVM or native compiler might decide to store a boolean[] in 64-bit long chunks like a BitSet. It does not have to tell you, so long as the program gives the same answers. It might allocate some temporary Objects on the stack. It may optimize some variables or method calls totally out of existence replacing them with constants. It might version methods or loops, i.e. compile two versions of a method, each optimized for a certain situation, then decide up front which one to call. Then of course the hardware and OS have multilayer caches, on chip-cache, SRAM cache, DRAM cache, ordinary RAM working set and backing store on disk. Your data may be duplicated at every cache level. All this complexity means you can only very roughly predict RAM consumption.

测量方法

您可以使用Instrumentation.getObjectSize()来获得对象消耗的存储空间的估估值。

要可视化实际的对象布局、占用空间和引用,可以使用JOL (Java对象布局)工具。

对象头文件和对象引用

在现代64位JDK中,对象具有12字节的报头,填充为8字节的倍数,因此最小对象大小为16字节。对于32位jvm,开销为8字节,填充为4字节的倍数。(来自Dmitry Spikhalskiy的回答、Jayen的回答和JavaWorld。)

通常,引用在32位平台上为4字节,在64位平台上为-Xmx32G;32Gb以上8字节(-Xmx32G)。(参见压缩对象引用。)

因此,64位JVM通常需要30-50%以上的堆空间。我应该使用32位的JVM还是64位的JVM?, 2012, JDK 1.7)

盒装类型、数组和字符串

与原始类型相比,盒装包装器的开销更大(来自JavaWorld):

Integer: The 16-byte result is a little worse than I expected because an int value can fit into just 4 extra bytes. Using an Integer costs me a 300 percent memory overhead compared to when I can store the value as a primitive type Long: 16 bytes also: Clearly, actual object size on the heap is subject to low-level memory alignment done by a particular JVM implementation for a particular CPU type. It looks like a Long is 8 bytes of Object overhead, plus 8 bytes more for the actual long value. In contrast, Integer had an unused 4-byte hole, most likely because the JVM I use forces object alignment on an 8-byte word boundary.

其他容器也很昂贵:

Multidimensional arrays: it offers another surprise. Developers commonly employ constructs like int[dim1][dim2] in numerical and scientific computing. In an int[dim1][dim2] array instance, every nested int[dim2] array is an Object in its own right. Each adds the usual 16-byte array overhead. When I don't need a triangular or ragged array, that represents pure overhead. The impact grows when array dimensions greatly differ. For example, a int[128][2] instance takes 3,600 bytes. Compared to the 1,040 bytes an int[256] instance uses (which has the same capacity), 3,600 bytes represent a 246 percent overhead. In the extreme case of byte[256][1], the overhead factor is almost 19! Compare that to the C/C++ situation in which the same syntax does not add any storage overhead. String: a String's memory growth tracks its internal char array's growth. However, the String class adds another 24 bytes of overhead. For a nonempty String of size 10 characters or less, the added overhead cost relative to useful payload (2 bytes for each char plus 4 bytes for the length), ranges from 100 to 400 percent.

对齐

考虑这个例子对象:

class X {                      // 8 bytes for reference to the class definition
   int a;                      // 4 bytes
   byte b;                     // 1 byte
   Integer c = new Integer();  // 4 bytes for a reference
}

naïve和表明X的一个实例将使用17个字节。然而,由于对齐(也称为填充),JVM以8字节的倍数分配内存,因此它将分配24字节而不是17字节。

不,100个小对象比一个大对象需要更多的信息(内存)。

这将是一个非常广泛的问题。

它取决于类变量,或者你可以在java中调用作为状态的内存使用。

对于头文件和引用,它还需要一些额外的内存。

Java对象使用的堆内存包括

基本字段的内存,根据它们的大小(参见下面的基本类型的大小); 用于引用字段的内存(每个4字节); 一个对象头,由几个字节的“管理”信息组成;

java中的对象还需要一些“内务”信息,比如记录对象的类、ID和状态标志,比如对象当前是否可达、当前是否同步锁定等。

Java对象头大小在32位和64位jvm上不同。

虽然这些是主要的内存消费者,jvm有时也需要额外的字段,如代码的对齐等。

基本类型的大小

布尔和字节——1

Char & short——2

Int & float—4

长双——8

不,注册一个对象也会占用一些内存。100个具有1个属性的对象将占用更多内存。