我使用matplotlib来创建图。我必须用不同的颜色来标识每个图,这应该由Python自动生成。
你能不能给我一个方法,在同一个图里不同的图用不同的颜色?
我使用matplotlib来创建图。我必须用不同的颜色来标识每个图,这应该由Python自动生成。
你能不能给我一个方法,在同一个图里不同的图用不同的颜色?
Matplotlib默认这样做。
例如:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(10)
plt.plot(x, x)
plt.plot(x, 2 * x)
plt.plot(x, 3 * x)
plt.plot(x, 4 * x)
plt.show()
而且,正如你可能已经知道的,你可以很容易地添加一个图例:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(10)
plt.plot(x, x)
plt.plot(x, 2 * x)
plt.plot(x, 3 * x)
plt.plot(x, 4 * x)
plt.legend(['y = x', 'y = 2x', 'y = 3x', 'y = 4x'], loc='upper left')
plt.show()
如果你想控制循环的颜色:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(10)
plt.gca().set_color_cycle(['red', 'green', 'blue', 'yellow'])
plt.plot(x, x)
plt.plot(x, 2 * x)
plt.plot(x, 3 * x)
plt.plot(x, 4 * x)
plt.legend(['y = x', 'y = 2x', 'y = 3x', 'y = 4x'], loc='upper left')
plt.show()
如果您不熟悉matplotlib,本教程是一个很好的开始。
编辑:
首先,如果你有很多东西(>5),你想在一个图形上绘制,要么:
把它们放在不同的图上(考虑在一个图上使用几个子图),或者 使用颜色以外的东西(即标记样式或线条粗细)来区分它们。
否则,你将以一个非常混乱的情节结束!善待那些会读到你在做什么的人,不要试图把15种不同的东西塞进一个人的身上!!
除此之外,许多人在不同程度上都是色盲,区分众多微妙不同的颜色比你想象的要困难得多。
话虽如此,如果你真的想在一个轴上放20条线,用20种相对不同的颜色,这里有一种方法:
import matplotlib.pyplot as plt
import numpy as np
num_plots = 20
# Have a look at the colormaps here and decide which one you'd like:
# http://matplotlib.org/1.2.1/examples/pylab_examples/show_colormaps.html
colormap = plt.cm.gist_ncar
plt.gca().set_prop_cycle(plt.cycler('color', plt.cm.jet(np.linspace(0, 1, num_plots))))
# Plot several different functions...
x = np.arange(10)
labels = []
for i in range(1, num_plots + 1):
plt.plot(x, i * x + 5 * i)
labels.append(r'$y = %ix + %i$' % (i, 5*i))
# I'm basically just demonstrating several different legend options here...
plt.legend(labels, ncol=4, loc='upper center',
bbox_to_anchor=[0.5, 1.1],
columnspacing=1.0, labelspacing=0.0,
handletextpad=0.0, handlelength=1.5,
fancybox=True, shadow=True)
plt.show()
I would like to offer a minor improvement on the last loop answer given in the previous post (that post is correct and should still be accepted). The implicit assumption made when labeling the last example is that plt.label(LIST) puts label number X in LIST with the line corresponding to the Xth time plot was called. I have run into problems with this approach before. The recommended way to build legends and customize their labels per matplotlibs documentation ( http://matplotlib.org/users/legend_guide.html#adjusting-the-order-of-legend-item) is to have a warm feeling that the labels go along with the exact plots you think they do:
...
# Plot several different functions...
labels = []
plotHandles = []
for i in range(1, num_plots + 1):
x, = plt.plot(some x vector, some y vector) #need the ',' per ** below
plotHandles.append(x)
labels.append(some label)
plt.legend(plotHandles, labels, 'upper left',ncol=1)
**: Matplotlib传说不工作
稍后再设置
如果你不知道你要绘制的图的数量,你可以改变颜色,一旦你绘制了它们,使用.lines直接从图中检索数字,我使用这个解决方案:
一些随机数据
import matplotlib.pyplot as plt
import numpy as np
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
for i in range(1,15):
ax1.plot(np.array([1,5])*i,label=i)
你需要的一段代码:
colormap = plt.cm.gist_ncar #nipy_spectral, Set1,Paired
colors = [colormap(i) for i in np.linspace(0, 1,len(ax1.lines))]
for i,j in enumerate(ax1.lines):
j.set_color(colors[i])
ax1.legend(loc=2)
结果如下:
不,它不能自动完成。是的,这是可能的。
import matplotlib.pyplot as plt
my_colors = plt.rcParams['axes.prop_cycle']() # <<< note that we CALL the prop_cycle
fig, axes = plt.subplots(2,3)
for ax in axes.flatten(): ax.plot((0,1), (0,1), **next(my_colors))
一个图(图)中的每个图(轴)都有自己的颜色循环-如果你不强制每个图使用不同的颜色,所有的图都共享相同的颜色顺序,但是,如果我们稍微扩展一下“自动”的含义,这是可以做到的。
OP写道
[…我必须用不同的颜色来识别每个图,这应该由[Matplotlib]自动生成。
但是…Matplotlib自动为每条不同的曲线生成不同的颜色
In [10]: import numpy as np
...: import matplotlib.pyplot as plt
In [11]: plt.plot((0,1), (0,1), (1,2), (1,0));
Out[11]:
那么为什么是OP请求呢?如果我们继续读下去,我们就会成功
你能不能给我一个方法,在同一个图里不同的图用不同的颜色?
这是有道理的,因为每个图(Matplotlib中的每个轴)都有自己的color_cycle(更确切地说,在2018年,它的prop_cycle),并且每个图(轴)以相同的顺序重用相同的颜色。
In [12]: fig, axes = plt.subplots(2,3)
In [13]: for ax in axes.flatten():
...: ax.plot((0,1), (0,1))
如果这是最初问题的意思,一种可能是明确地为每个图命名不同的颜色。
如果图是在循环中生成的(这经常发生),我们必须有一个额外的循环变量来覆盖Matplotlib自动选择的颜色。
In [14]: fig, axes = plt.subplots(2,3)
In [15]: for ax, short_color_name in zip(axes.flatten(), 'brgkyc'):
...: ax.plot((0,1), (0,1), short_color_name)
另一种可能是实例化一个cycler对象
from cycler import cycler
my_cycler = cycler('color', ['k', 'r']) * cycler('linewidth', [1., 1.5, 2.])
actual_cycler = my_cycler()
fig, axes = plt.subplots(2,3)
for ax in axes.flat:
ax.plot((0,1), (0,1), **next(actual_cycler))
注意,type(my_cycler)是cycler。循环器,但类型(actual_cycler)是itertools.cycle。
Matplot用不同的颜色给你的场景上色,但如果你想放特定的颜色
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(10)
plt.plot(x, x)
plt.plot(x, 2 * x,color='blue')
plt.plot(x, 3 * x,color='red')
plt.plot(x, 4 * x,color='green')
plt.show()
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from skspatial.objects import Line, Vector
for count in range(0,len(LineList),1):
Line_Color = np.random.rand(3,)
Line(StartPoint,EndPoint)).plot_3d(ax,c="Line"+str(count),label="Line"+str(count))
plt.legend(loc='lower left')
plt.show(block=True)
上面的代码可以帮助你以随机的方式添加不同颜色的3D线条。你的彩色线条也可以通过标签="…"中提到的图例来引用。”参数。
老实说,我最喜欢的方法很简单:现在这对任意数量的地块都不适用,但它可以满足你到1163的需求。这是通过使用所有matplotlib的命名颜色的映射,然后随机选择它们。
from random import choice
import matplotlib.pyplot as plt
from matplotlib.colors import mcolors
# Get full named colour map from matplotlib
colours = mcolors._colors_full_map # This is a dictionary of all named colours
# Turn the dictionary into a list
color_lst = list(colours.values())
# Plot using these random colours
for n, plot in enumerate(plots):
plt.scatter(plot[x], plot[y], color=choice(color_lst), label=n)