我有3个CSV文件。每个数据框架的第一列都是人的(字符串)名,而每个数据框架中的所有其他列都是人的属性。
我如何将所有三个CSV文档“联接”在一起,以创建一个单一的CSV,其中每行都具有人的字符串名称的每个唯一值的所有属性?
pandas中的join()函数指定我需要一个多索引,但我对分层索引方案与基于单个索引进行连接有什么关系感到困惑。
我有3个CSV文件。每个数据框架的第一列都是人的(字符串)名,而每个数据框架中的所有其他列都是人的属性。
我如何将所有三个CSV文档“联接”在一起,以创建一个单一的CSV,其中每行都具有人的字符串名称的每个唯一值的所有属性?
pandas中的join()函数指定我需要一个多索引,但我对分层索引方案与基于单个索引进行连接有什么关系感到困惑。
当前回答
我调整了接受的答案,使用reduce对不同后缀参数上的多个数据帧执行操作,我猜它也可以扩展到不同的参数上。
from functools import reduce
dfs_with_suffixes = [(df2,suffix2), (df3,suffix3),
(df4,suffix4)]
merge_one = lambda x,y,sfx:pd.merge(x,y,on=['col1','col2'..], suffixes=sfx)
merged = reduce(lambda left,right:merge_one(left,*right), dfs_with_suffixes, df1)
其他回答
如果你有3个数据框架,你可以试试这个
# Merge multiple dataframes
df1 = pd.DataFrame(np.array([
['a', 5, 9],
['b', 4, 61],
['c', 24, 9]]),
columns=['name', 'attr11', 'attr12'])
df2 = pd.DataFrame(np.array([
['a', 5, 19],
['b', 14, 16],
['c', 4, 9]]),
columns=['name', 'attr21', 'attr22'])
df3 = pd.DataFrame(np.array([
['a', 15, 49],
['b', 4, 36],
['c', 14, 9]]),
columns=['name', 'attr31', 'attr32'])
pd.merge(pd.merge(df1,df2,on='name'),df3,on='name')
或者,正如考兰德提到的
df1.merge(df2,on='name').merge(df3,on='name')
不需要多索引来执行连接操作。 我们只需要正确地设置索引列来执行连接操作(例如哪个命令df.set_index('Name'))
默认情况下,连接操作在索引上执行。 在本例中,只需指定Name列对应于索引。 下面是一个例子
教程可能会有用。
# Simple example where dataframes index are the name on which to perform
# the join operations
import pandas as pd
import numpy as np
name = ['Sophia' ,'Emma' ,'Isabella' ,'Olivia' ,'Ava' ,'Emily' ,'Abigail' ,'Mia']
df1 = pd.DataFrame(np.random.randn(8, 3), columns=['A','B','C'], index=name)
df2 = pd.DataFrame(np.random.randn(8, 1), columns=['D'], index=name)
df3 = pd.DataFrame(np.random.randn(8, 2), columns=['E','F'], index=name)
df = df1.join(df2)
df = df.join(df3)
# If you have a 'Name' column that is not the index of your dataframe,
# one can set this column to be the index
# 1) Create a column 'Name' based on the previous index
df1['Name'] = df1.index
# 1) Select the index from column 'Name'
df1 = df1.set_index('Name')
# If indexes are different, one may have to play with parameter how
gf1 = pd.DataFrame(np.random.randn(8, 3), columns=['A','B','C'], index=range(8))
gf2 = pd.DataFrame(np.random.randn(8, 1), columns=['D'], index=range(2,10))
gf3 = pd.DataFrame(np.random.randn(8, 2), columns=['E','F'], index=range(4,12))
gf = gf1.join(gf2, how='outer')
gf = gf.join(gf3, how='outer')
0的答案基本上是一个约简运算。如果我有很多数据框架,我会把它们放在一个这样的列表中(通过列表推导或循环或诸如此类的东西生成):
dfs = [df0, df1, df2, ..., dfN]
假设他们有一个共同的列,就像你的例子中的name一样,我会做以下事情:
import functools as ft
df_final = ft.reduce(lambda left, right: pd.merge(left, right, on='name'), dfs)
这样,您的代码就可以处理您想合并的任何数量的数据框架。
对于一个数据帧列表df_list,也可以这样做:
df = df_list[0]
for df_ in df_list[1:]:
df = df.merge(df_, on='join_col_name')
或者如果数据帧在生成器对象中(例如,为了减少内存消耗):
df = next(df_list)
for df_ in df_list:
df = df.merge(df_, on='join_col_name')
熊猫文档中还有另一个解决方案(我在这里没有看到),
使用.append
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
A B
0 5 6
1 7 8
>>> df.append(df2, ignore_index=True)
A B
0 1 2
1 3 4
2 5 6
3 7 8
ignore_index=True用于忽略附加数据帧的索引,将其替换为源数据帧中的下一个可用索引。
如果有不同的列名,则引入Nan。